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Abstract

Technological innovations have allowed some sellers to collect detailed information about buy-

ers. I study these changes in a standard search-theoretic model of imperfect competition, featuring

buyers with heterogeneous private valuations for quality, and introduce sellers who observe val-

uation signals of heterogeneous precision. Signals induce third-degree price discrimination, and

their precision largely dictates whether they are used to increase trade or increase markups - im-

pacting aggregate surplus and its distribution. When buyers’ valuations are more heterogeneous,

imprecisely informed sellers prioritize high markups despite limiting trade, and precision relaxes

this tension, not only allowing them to pursue high markups when it is least obstructive but also

primarily incentivizing low markup offers that increase trade upon signals indicative of low valu-

ation - increasing aggregate surplus and benefiting (hurting) buyers with a low (high) valuation.

However, when valuations are more homogeneous, imprecisely informed sellers prioritize trade,

and precision can primarily incentivize high markup offers that limit trade upon signals indica-

tive of high valuation, hurting all buyers and even decreasing aggregate surplus. In either case,

precision makes sellers more profitable, but its effect on competitors can be positive or negative.

Generally, competitors suffer (benefit) when laggards (leaders) gain precision.
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1 Introduction

Matt Murray (Wall Street Journal, Editor in Chief): The perception of a lot of
people is that you’ve morphed...In a lot of ways, you’re thought of as a data company more
than a retail company.
Jeff Wilke (CEO, Amazon Worldwide Consumer): There was a corner pharmacy
where I grew up. The pharmacist had been there forever. When you walked in, he knew
what you liked to buy...That’s the same thing we’re doing. Our main purpose in storing
your purchases is so that we can recommend something that you might want to buy the
next time.

-“Amazon’s Defense of Private Brands” (WSJ, 10/24/19).

Amazon’s well-documented harvesting and leveraging of consumer data exemplifies a sweeping

transformation in the way contemporary firms operate. A surge in the availability of data and in the

power of analytical methods that uncover its insights1 now allows firms to better discern consumer

preferences and tailor offers2. These methods have been broadly but heterogeneously deployed across

industries and functions. However, despite the importance of this pipeline, its impact on markets is

not well understood.

There are several natural questions about this technological change. First, whether it benefits us

in aggregate and as consumers in particular is of immediate importance. In this vein, policymakers

have raised concerns about potential detrimental effects on competition (FTC (2012, 2013, 2014),

CEA (2015), UK Competition and Markets Authority (2021)) and enacted wide-ranging measures,

such as the EU’s General Data Protection Regulation and Artificial Intelligence Act. Second, how

do firms benefit from investments in prediction? The growing analytics gap3 between Amazons of

the world and more traditional businesses suggests that investment is profitable, but in the right

context. So, what is that context? And, how does this type of investment affect competitors? To

address these questions, I leverage a standard search-theoretic framework of imperfect competition,

featuring buyers with heterogeneous private valuations for quality, and introduce sellers who observe

buyer valuation signals. Signals are characterized by their precision, measured as the probability of

correctly predicting a buyer’s valuation, and I allow this ex-ante attribute to be heterogeneous among

sellers. I characterize equilibria analytically, linking properties of information with properties of offers,

and study the comparative statics of both precision and competition, documenting their effects on

total surplus as well as its distribution between and within buyers and sellers.

The precision of valuation information fundamentally determines its impact on trade and the

distribution of its gains. It shapes sellers’ trade-off between profiting through higher sales versus

higher markups, so different levels of precision give rise to different offer strategies. In particular,

precision makes their offers more responsive to their signals, giving them the confidence to extend

higher-markup offers that decrease sales upon signals indicative of high buyer valuations and lower-

markup offers that increase sales upon signals indicative of low buyer valuations. Precision also

increases the sales of any offer strategy by increasing the probability that its high- (low-) markup

offers are extended to buyers with a high (low) valuation. The net result of these two effects is that

precision can increase or decrease sales and, by extension, the efficiency of trade.

1Since 2018, the McKinsey Global Institute has conducted a yearly survey on the “State of AI”, “representing the
full range of regions, industries, company sizes, functional specialties, and tenures”. Approximately half of all firms
consistently report the adoption of AI in at least one business function, while the average number of functions has
doubled since the first survey.

2Mikians et al. (2012, 2013), Hannak et al. (2014), Chen et al. (2015) document the pervasiveness of these
methods among sellers, both large and small, while industry surveys by Deloitte (2018) and McKinsey (2023) echo
these points, respectively finding widespread use of AI for personalization and that “Marketing and Sales” along with
“Product/Service Development” are the most common business functions for AI applications.

3In McKinsey’s surveys, high-performing organizations are more than three times as likely to report that their data
and analytics contributed at least 20% of earnings before interest and taxes.
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When buyers’ valuations are more heterogeneous, imprecisely informed sellers pursue inefficient

high-markup strategies, and additional precision primarily relaxes this motive; however, when buyers’

valuations are more homogeneous, imprecisely informed sellers pursue efficient high-sale strategies,

and additional precision can weaken this motive. Beyond its aggregate impact, precision is inherently

redistributive, shifting the share of surplus between buyers and sellers as well as its distribution

within each side of the market. On the demand side, all buyers benefit (suffer) when precision strongly

stimulates (contracts) trade, whereas if it only moderately stimulates trade then high-valuation buyers

- the principal targets of high markups - suffer and low-valuation buyers - the principal victims of

rationed trade - benefit. On the supply side, precision improves the profitability of sellers, but it

can make competitors more or less profitable. This is because precision softens competition for high-

valuation buyers but intensifies competition for low-valuation buyers, and either effect can dominate. I

find that economies with a high level of competition and valuation heterogeneity are most conducive to

negative profit externalities from improvements in peer precision. Precision heterogeneity introduces

a particularly interesting twist to these externalities, as it reveals that advances in the precision of

laggards are generally detrimental for leaders, whereas all sellers benefit when leaders surge further

ahead.

I confirm the traditional effects of competition but also find a new - concerning - one. Char-

acteristically, competition increases trade (efficiency) and buyer surplus. However, competition and

imprecision both reduce the sensitivity of sellers’ offers to their signals. This complementarity makes

less precisely informed sellers particularly prone to forego using their predictive skill and implies that

competition can exacerbate the documented disparity in the use of predictive technologies.

Before proceeding with more detailed results, it is helpful to describe the components of the model.

On one side of the market, there is a unit mass of buyers with low or high private valuations for the

quality of a good. On the other side, there is a unit mass of sellers who produce the good with a

common technology. I introduce imperfect competition by matching buyers and sellers in the style of

Burdett and Judd (1983): each buyer matches with either one or two sellers who make simultaneous

take-it-or-leave-it offers, without any information about the number of competitors in the match

beyond the commonly known matching protocol. In this formulation, I capture the full range of

competitive intensity, from monopoly to perfect competition, by varying the probability of matching

with only one seller. My innovation is (a) introducing additional seller information about buyers’

valuations with flexible precision and (b) allowing precision to differ among sellers. Concretely, I

model this by assuming that the population distribution of buyer valuations is common knowledge

but that each seller observes a private signal about the matched buyer’s valuation. Signals can take

two possible values, low or high, and their precision is the probability of taking a low (high) value

when the matched buyer has a low- (high-) valuation. A discretization with two levels of precision

suffices to study seller heterogeneity: that of less precisely informed sellers, referred to as amateurs,

and that of more precisely informed sellers, referred to as sharks. This allows me to capture the full

range of valuation information asymmetry between buyers and sellers as well as between sellers, by

varying the absolute levels of amateur and shark precision4.

I introduce most of the core ideas in a simpler environment, where sellers have identical precision

and offer an identical good of exogenously specified quality, so predictive skill only orients pricing.

Then, I proceed to the general environment where sellers have differing precision and can choose the

quality of the goods that they offer, so predictive skill orients pricing and production. In all economies,

equilibria are structured by several ordering relations. A principal one relates to the conditional

4I could also study the effects of precision by varying the proportion of amateur and shark sellers, but the analysis
would be analogous and less direct.
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profitability of offers. In particular, high-markup offers are more profitable in matches with high-

valuation buyers, whereas high-sale offers, which share more of the gains from trade with buyers, are

more profitable in matches with low-valuation buyers. This equilibrium relation is generated by the

privacy and heterogeneity of preferences, so it would exist even without valuation signals, but it helps

align the differing priorities that signals induce among sellers. To understand this point, recall the

timing of this incomplete information game: sellers match with buyers, observe a valuation-relevant

signal, and update their beliefs. At this stage, a seller’s type is summarized by its posterior probability

that the buyer has a low-valuation. The conditional profitability relation therefore incentivizes sellers

of a larger type to extend higher sale offers that are more attractive to all buyers and also more

efficient. Since a seller’s type is greater when it observes a low (versus high) signal and when its

signals are more precise, sellers with lower signals extend more attractive offers, while sellers with more

precise information extend more extreme ones; in other words, sharks who observe high signals make

the highest markup/least attractive/most inefficient offers, sharks who observe low signals make the

lowest markup/most attractive/most efficient offers, and amateurs extend offers that are intermediate

in these respects. In this sense, the precisions and realizations of signals order sellers’ types (by

Bayes’ rule), and sellers’ types order offers’ implied surplus/efficiency (by equilibrium incentives).

The ultimate effect of a change in precision on trade and welfare is the net of its effect on the

distribution of matches between each type of buyer and seller, and its effect on the offers of each

type of seller extends. These offer and matching effects can go in opposite directions and generate

non-monotone comparative statics for precision. This is why it is imperative to consider information

counterfactuals beyond the traditional extremes of uninformative versus perfectly informative signals.

The model provides a tractable framework for this more nuanced analysis, allowing us to identify

precision from pricing and production decisions, and delivering clear predictions about the aggregate

and distributional effects of advances in prediction under a broad set of demand and competition

environments.

Surprisingly, despite the relevance of predictive skill for the types of products that buyers and

sellers trade, its effect on the efficiency of trade and consumer surplus is analogous when sellers

endogenously choose quality and when they do not. This is because when predictive skill only orients

pricing (exogenous quality economies), the link between markups, sales, and consumer surplus is still

present, generating analogous offer and matching effects for precision. However, when the production

channel is present (endogenous quality economies), equilibria change in form as sellers combine signal

valuation information with that gleaned by screening. They offer menus and their mix of offers depends

on their signal realization; in other words, sellers perform second- and third-degree price discrimination

concurrently. The principal difference between the relationship of precision with trade in each of these

two types of economies is that when quality is endogenous, trade also varies at the intensive margin

(the amount of quality traded in each match). Ultimately, endogenizing quality not only allows me

to assess the robustness of comparative statics but also to obtain the additional structure that makes

it tractable to study precision heterogeneity. I can then appropriately characterize the impact of

advances in prediction on sellers’ profits by considering counterfactuals that involve changes in the

precision of only a subset of sellers, isolating its spillovers on competitors.

Literature Review - My approach extends a tradition that leverages the canonical search-theoretic

framework of Burdett and Judd (1983), which teaches us that sellers’ incomplete information about

competition can induce price dispersion and characterizes the impact of competition’s expected level

on the distribution of prices. Garrett, Gomes, and Maestri5 (2019) introduce buyers with heteroge-

5Contemporaneously, Lester et al. (2019) study the flipside of Garret et al.’s setting - a lemons problem with an
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neous valuations for a vertically differentiated good to this setting, so sellers screen and competition’s

expected level then also impinges on the efficiency of trade. I advance this literature by studying

the effects of the level of asymmetric valuation information between buyers and sellers (through the

precision of signals) as well as between different sellers (through the heterogeneity of precision).

Generally, I contribute to the extensive literature on price discrimination, particularly the strand

concerned with understanding the factors that dictate the welfare implications of second- and third-

degree price discrimination. The latter’s tradition extends back to Pigou (1920), whereas the former

has been an active field since the seminal work of Mussa and Rosen (1978). A salient theme has been

the double-edged nature of price discrimination: potentially increasing efficiency but also redistribut-

ing surplus. My concern for the levers that determine the sign of these effects is in line with research

that has analyzed the influence of market structure6 and demand characteristics7. I contribute to this

tradition in two ways. First, I characterize the dependence of price discrimination’s effects on novel

structural factors: mainly, preference heterogeneity, search behavior, and information precision. The

role of precision is particularly important because the statistical properties of information dictate the

market segments that it generates and so the characteristics of demand in each segment, which this

literature highlights as central to the welfare effects of third-degree price discrimination. My second

contribution is linking second- and third-degree price discrimination, as sellers practice both con-

currently when quality is endogenous. This methodological step has immediate practical dividends,

yielding a rich set of relations between observables and (unobservable) precision, highlighting the qual-

itatively different profit externalities from precision advances of laggards versus leaders, and drawing

attention to the point that competition can exacerbate disparities in usage of prediction technologies.

My work also forms part of a growing literature that investigates the microfoundations and macroe-

conomic implications of the prediction pipeline. At the data collection stage, research8 has focused on

the incentives of buyers to disclose information about their preferences, trading off the attractiveness

of product offers with the attractiveness of their prices or privacy costs, while at the insight extrac-

tion stage, the role of intermediaries and their use of information design to pursue various objectives,

including aggregate and distributional goals9, has been a principal concern. These works are comple-

mentary to ours since they investigate the process of generating information and its welfare effects

in a specific market setting, meanwhile, I study the welfare effects of different types of information -

parameterized by an interpretable statistical property (precision) - across market settings of varying

demand and supply characteristics. Relatedly, the connection between data and market structure has

been studied through a multidisciplinary effort that incorporates frameworks from macroeconomics,

industrial organization, and finance10. I share some of the qualitative welfare effects of information and

competition, but microfounding the heterogeneity on both sides of the market allows us to parse their

composition (finding that different types of buyers can experience opposite outcomes) and consider

a larger class of information counterfactuals (finding significant differences from advances in leader

and laggard precision), while my concern for the use of information to price discriminate introduces

fundamentally different determinants of welfare effects.

The paper proceeds as follows: in Section 2, I introduce the environment, in Section 3, I study

economies where sellers have homogeneous precision and quality is exogenous, and in Section 4, I

analogous matching mechanism where privately informed sellers obtain bids from uninformed buyers.
6See Holmes (1989), Armstrong and Vickers (2001), Rochet and Stole (1997, 2002), Stole (2007), Vives (2011), and

Rhodes and Zhou (2022).
7See Robinson (1933), Schmalensee (1981), Varian (1985), and Aguirre et al. (2010)
8See Braghieri (2019), Ichihashi (2020), Bonatti and Cisternas (2020), Hidir and Vellodi (2021), and Ali et al. (2023).
9See Bergemann et al. (2015, 2018), Elliot et al. (2021), Guo et al. (2022), Yang (2022), Haghpanah and Siegel

(2023), Galperti et al. (2023), and Ichihashi and Smolin (2023).
10See Begenau at al. (2018), Agrawal et al. (2018, 2019), Kehoe et al. (2020), Farboodi and Veldkamp (2022), and

Eeckhout and Veldkamp (2022)
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study economies where sellers have heterogeneous precision and quality is endogenous. The Appendix

is reserved for primarily technical discussion.

2 Environment

There is a unit mass of buyers with single-unit demands and heterogeneous tastes for the quality of a

good.

Assumption 2.1 (Additively Separable Utility). A buyer with a marginal value for quality θi obtains

utility u(q, x; θi) = θiq − x from consuming a good of quality q at a price of x.

The utility of not trading is normalized to zero.

Sellers can produce a good of quality q using a common cost function for quality φ(q). Upon a

successful transaction with a buyer for a contract (q, x), sellers receive profits x − φ(q). Buyers and

sellers match according to an exogenously defined process in the style of Burdett and Judd (1983).

In particular, a buyer matches with one or two randomly and independently drawn sellers, and the

probability of a single match is ρ̃ ∈ (0, 1). Because I assume that the number of matches is private

to the buyer, sellers face uncertainty as to whether they are in competition with another seller in any

match. As such, matched sellers assign a probability of,

ρ = P(single match|matched) =
ρ̃

ρ̃+ 2(1− ρ̃)
(2.1)

to not competing, and ρ effectively governs the level of competition - ranging from the extremes of

perfect competition (ρ = 0) to monopoly (ρ = 1).

While the ex-ante distribution of buyer valuations is common knowledge, sellers also observe a

private signal about the valuation of each buyer with whom they match, and the precision of signals

is allowed to be heterogeneous among sellers11. I study the simplest discretization of precision, where

sellers are either less precisely informed amateurs or more precisely informed sharks with respective

precisions

αe = P e(signal = i|matched buyer’s valuation = θi) i ∈ {l, h}, e ∈ {a, s} (2.2)

0.5 ≤ αa < αs < 1 (2.3)

The two relative precision categories of amateur and shark remain fixed throughout the paper, even

if the absolute level of precision that they represent differs, and the share of αe precision sellers is

denoted by µ(e).

Agents do not make choices before matching, so this setting is that of an incomplete information

game that is solved at the interim stage, after matches have formed and sellers have observed their

signals. A seller’s type is then its posterior belief of being in a low-valuation match, pe,jL = P e(θ =

θL|j),

pe,jL =
P e(j|θL)P(θL)

P e(j|θL)P(θL) + P e(j|θH)P(θH)
(2.4)

I assume signals are essentially pairwise independent conditionally on the buyer’s valuation, so they

are only informative about the type of possible competitors in a match through their information

about the buyer’s valuation.

11In practice, precision can be improved by acquiring more/better data or by improving the methods with which data
are analyzed. Precision heterogeneity is, therefore, natural when we consider the diversity of firms’ data resources and
analytical practices.
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Having introduced the environment, I will first analyze the role of precision in environments where

sellers have identical precision and produce a good of exogenously determined quality, so equilibrium

offers take the simple form of a quoted price per unit x. This will allow me to swiftly identify

some of the principal effects of competition and precision on prices and welfare. Subsequently, I will

introduce heterogeneity in precision and endogenize quality, allowing sellers to choose the quality of

the goods they offer. This will allow me to analyze the connection between the level and distribution

of precision with the fit of products available to buyers as well as its profit externalities on competitors,

but requires considering a more complex set of offers, as these, optimally, take the form of screening

menus composed of quality-price contracts ((qL, xL), (qH , xH)).

3 Exogenous Quality Setting

For the remainder of this section, I assume that sellers produce a homogeneous good of exogenous

quality at zero cost.

Assumption 3.1 (Exogenous Quality Assumptions). The traded good has quality q = 1 and a cost

of production φ(1) = 0.

As such, there are gains from trade with both types of buyers, and buyers simply choose the cheapest

offer that is below their valuation, when one is available. The exclusion of product design (quality)

choices allows me to isolate the role of the pricing channel, but still characterize some of the main

relationships between precision, the properties of offers, and welfare that extend to settings where

quality is endogenous. To obtain these insights in the most straightforward fashion, I will also assume

that sellers have identical precision.

Assumption 3.2 (Homogeneous Sellers). All sellers observe signals of precision α.

There are only two types of sellers then: sellers who observe a high signal, of type phL, and sellers who

observe a low signal, of type plL.

In equilibrium, sellers who are more convinced that they are matched with high-valuation buyers

- those who observe high signals - will offer higher prices, often beyond the willingness to pay of low-

valuation buyers, and thus forego trade in some matches. Inversely, sellers who are more convinced that

they are matched with low-valuation buyers - those who observe low signals - will offer lower prices,

often substantially below the willingness to pay of high-valuation buyers. Both types of mispricing

decrease profits, but pricing out low-valuation buyers also decreases trade and, thus, efficiency.

Greater precision will make any given pricing strategy more profitable and efficient by reducing

instances of mispricing; however, it will also induce sellers to change their pricing strategies. Precision

gives sellers the confidence to offer larger and more frequent discounts upon a signal indicative of

low-valuation, but also to offer larger and more frequent price hikes upon a signal indicative of high-

valuation. While the former increases trade, the latter decreases it. Naturally, any adjustment in

strategy is towards greater profitability, and, in equilibrium, precision is individually beneficial for

sellers, but its externalities on other agents (buyers or competitors) can be positive or negative.

We will learn that the effect of greater precision on trade is closely linked to the heterogene-

ity of buyers’ valuations θH − θL, i.e. dispersion in willingness to pay. When buyers’ valuations

are sufficiently heterogeneous, trade will increase alongside precision, whereas if they are sufficiently

homogeneous, they will go in the opposite direction. Accounting for the winning and losing sides,

all/low-valuation/no buyers will obtain greater surplus when precision strongly-increases/weakly-

increases/decreases trade, respectively, whereas sellers will become more profitable due to collective
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precision advances so long as it is not the case that both competition and valuation dispersion is high.

Before characterizing the determinants of these welfare effects, I will formally introduce the seller’s

problem and the structure of equilibria.

3.1 Seller Problem and Equilibrium Concept

The expected profits of a type pjL seller from a price offer x are the product of its profits per sale, x,

times its expected sales, P(sale at price x|j),

Π(x) = P(sale at price x|j)x (3.1)

As in private value auctions, sellers know the value of winning at the time an offer is extended, the

profits per sale x, but must infer the probability of winning. I call this probability the offer’s expected

sales. It reflects the uncertainty a seller has about four variables: (1) the buyer’s valuation, (2)

whether the buyer is matched with another seller, (3) the type of that seller, and (4) the offer it would

make. The optimal offers of a type pjL seller are thus the prices,

xj(P(·|j)) = argmax
x∈R

Π(x)P(sale at price x|j)x (3.2)

and its strategy is a cumulative distribution function F j(x) over these. This type of seller’s expected
sales are decomposed as,

P(sale at price x|j) = ρP(sale at price x|monopoly match, j)

+ (1− ρ)

(
P(θL|competitive match, j)P(sale at price x|θL, competitive match, j)

+ P(θH |competitive match, j)P(sale at price x|θH , competitive match, j)

)

= ρ(pjL1(x ≤ θL) + pjH) + (1− ρ)

(
pjL(1− F (x|θL))1(x ≤ θL) + pjH(1− F (x|θH))

)
(3.3)

where F (x|θi) is the distribution of prices the seller expects a competitor to offer in matches with

θi valuation buyers. This decomposition quantifies the seller’s sources of uncertainty: the buyer’s

valuation (pji terms), the existence of competing offers (ρ terms), and their exact terms (F (x|θ)
terms). The distribution of competing offers, F (x|θ), encapsulates uncertainty about both the type

of competitors and the offers of each type, emerging naturally as an average of each type of seller’s

strategy,

F (x|θ) =
∑

j∈{l,h}

P(seller observes j|θ)P(seller offers a price below x|signal j)

=
∑

j∈{l,h}

P(j|θ)F j(x) (3.4)

This is sufficient to define the equilibrium concept.

Definition 3.1 (Bayes-Nash Equilibrium). A Bayes-Nash equilibrium is a pair of distributions (F l, Fh),

for each type of seller pjL, satisfying supP(F j) ⊆ xj(P(·|j)) for j ∈ {l, h}.

Equilibria have several properties that make them tractable and intuitive. Equilibrium distributions

are continuous, almost everywhere differentiable, and strictly increasing on at most two convex inter-

vals. Furthermore, equilibria are essentially unique in the sense that profitability, buyer surplus, and

efficiency are invariant across them. Their qualitative properties highlight the role of information,
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with the organizing principle that higher prices are more profitable in high-valuation matches and are

therefore offered by sellers whose posteriors place more weight on being matched with a high-valuation

buyer.

3.2 Equilibrium Structure

3.2.1 Corner Cases: Monopoly and Perfect Competition

It is instructive to begin the analysis by focusing on the two extremes of competition: monopoly

(ρ = 1) and perfect competition (ρ = 0). These easily yield fundamental insights that extend to

economies where competition is imperfect (ρ ∈ (0, 1)) while also motivating their study.

Monopoly - A monopolist’s pricing choice involves the traditional trade-off between sales and markups.

A matched buyer either accepts the monopolist’s offer to buy the good for a price of x and obtains

θi − x utility, or rejects it and obtains zero utility. The monopolist’s optimal take-it-or-leave-it of-

fer therefore makes the lowest valuation buyer with whom it trades indifferent between accepting

or rejecting: it sets a sales maximizing price of x = θL, and trades with every buyer, or a markup

maximizing price of x = θH , and only trades with high-valuation buyers, choosing the offer with the

highest expected revenue (costs are zero),

θL ≶ (1− pjL)θH ⇐⇒ pjLθL ≶ (1− pjL)(θH − θL)

The monopolist’s valuation beliefs, summarized by pjL, determine her price offer upon signal j. If she

is sufficiently convinced that the buyer’s valuation is low (high pjL), the low price x = θL is optimal,

since the expected value of its additional sales, pjLθL, is greater than the expected cost of its discount,

(1 − pjL)(θH − θL); otherwise, if she is sufficiently convinced that the buyer’s valuation is high, she

expects extraction of their information rents to be the most profitable action and chooses a price of

x = θH .

Proposition 3.1 (Monopoly). If ρ = 1, a seller of type pjL offers a price12,

x∗(pjL) =

θH if pjL < p∗L

θL otherwise
(3.5)

for the threshold probability,

p∗L =
θH − θL
θH

(3.6)

The first general takeaway is that price dispersion increases with precision, as the posteriors of

sellers with more precise information (larger α) are more dispersed (plL − phL increases), and posterior

dispersion increases the likelihood that on a low versus high signal the seller is above versus below

the threshold p∗L, respectively. In other words, precision dictates whether sellers practice third-degree

price discrimination or make signal-invariant offers. A monopolist who does not price discriminate

sets a uniformly low or high price, so a precision-induced switch to price discrimination impacts trade

efficiency and buyer welfare very differently, depending on which strategy would have been chosen

when it is less precisely informed.

When buyers’ valuations are sufficiently heterogeneous, imprecisely informed sellers face severe

adverse selection, so they set a uniformly high price of θH and only trade with high-valuation buyers.

12I break profitability ties in favor of trade, but that is immaterial.
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Y-axis Variable

Valuation Heterogeneity

θH − θL Low High

Probability of Trade: P(x ≤ θi|θi)

0

1

(α̂, α̂)

α
0

1

(α̂, α̂)

α

Buyer Surplus: E[ui ]

0

(α̂, θH − θL)

(α̂, (θH − θL)(1− α̂))

α

0

(θH − θL)(1− α̂)

α

Table 1: Consider a setting buyers always match with a single seller (ρ̃ = ρ = 1). Low (dashed)
versus High valuation buyer outcomes. At precision α̂, the seller switches from uniform pricing to
third-degree price discrimination.

They only have an incentive to offer a low price of θL upon a low signal, when signals are precise

enough, so precision is crucial to facilitating trade in these settings. A switch to price discrimination

not only increases trade with low-valuation buyers - the gains of which are entirely captured by sellers

- but also allows high-valuation buyers to obtain some information rents from instances of mispricing

(with probability 1− α in each match). In this sense, better prediction can weakly benefit all agents

when buyers are sufficiently heterogeneous.

However, when buyers’ valuations are relatively homogeneous, imprecisely informed sellers face

little adverse selection, so they set a uniformly low price of θL and trade with both types of buyers.

Instead, they only have an incentive to offer a high price of θH upon a high signal, when signals are

precise enough, but the switch to price discrimination also introduces mispricing. Low price offers to

high-valuation buyers simply redistribute - transfering seller surplus to high-valuation buyers - but

high price offers to low-valuation buyers are inefficient and decrease aggregate surplus. In this sense,

advances in prediction can be inefficient and exclusively benefit sellers when buyers are sufficiently

homogeneous. These effects of precision on offers and the link between its welfare effects with valuation

heterogeneity generalize to settings with some (but still imperfect) competition.

Unfortunately, this simple setting of monopoly constrains the analysis in two important respects.

When it comes to buyers, low-valuation buyer surplus is trivial (zero); whereas, under some competi-

tion, these buyers are able to obtain some of the gains from trade. When it comes to sellers, monopoly

shuts down the profit externalities of advances in prediction.

Perfect Competition - At the other corner is perfect competition (ρ = 0), where sellers engage

in Bertrand price competition and the unique equilibrium is one in which they offer the good at cost

9



and buyers capture all gains from trade.

Proposition 3.2 (Perfect Competition). If ρ = 0, the unique Bayes-Nash equilibrium is for almost

every seller to price the good at cost, x = 0, with probability 1.

Therefore, perfect competition constrains the analysis of precision in an even more severe respect,

mainly by making it irrelevant. However, this setting does highlight the classic pro-efficiency and

pro-consumer surplus effects of competition that generalize to others where sellers have market power.

3.2.2 Interior Cases: Imperfect Competition

I will now introduce the structure of equilibria in the remaining competitive settings13. It is help-

ful to begin by focusing on the distributions of prices offered in matches with each type of buyer

{F (x|θ)}θ∈{θL,θH}. These distributions are averages of each type’s strategy, so their supports are

identical. They start at the top with the highest equilibrium price. This price only allows sellers to

trade when they are in a monopoly match, so it is offered by sellers who expect the greatest sales from

high prices (sellers who observe high signals) and is equal to their monopoly offer. Analogously, if any

seller offers prices that low-valuation buyers find acceptable (individually rational), then the highest

one is θL, as it only beats unacceptable (x > θL) offers,

Proposition 3.3 (Highest Prices). The highest overall equilibrium price,

x =

θH if phL ≤ p∗L
θL otherwise

(3.7)

for p∗L from (3.6). And, if any prices ≤ θL are offered, the greatest one is θL.

It turns out that when high signal sellers would always offer prices that allow trade, there exists

a type-invariant equilibrium where both types of sellers have the same strategy and, due to the fact

that expected sales are then identical in matches with a buyer of either valuation, valuation signals do

not play a role. I select this equilibrium in such settings and derive it in the Appendix, but proceed

to analyze economies where precision is certain to have equilibrium effects at the margin.

Assumption 3.3 (Some Separating Offers). Precision α is such that phL ≤ p∗L.

In these economies, prices are supported on, at most, two convex intervals: one of prices that are only

acceptable to high-valuation buyers, [x̂, θH ] with θL < x̂, and another of prices that are acceptable to

all buyers.

Proposition 3.4 (Continuous Distributions, Support Convexity). Given Assumption 3.3, distribu-

tions of offers {F (x|θ)}θ∈{θL,θH} are atomless and supported on at most two convex intervals.

supp(F (x|θ)) = [x̂, θH ] or [x, θL] ∪ [x̂, θH ] (3.8)

where θL < x̂.

These properties are necessary to rule out the usual deviations: atomlessness rules out discrete

sales increases in competitive matches from infinitesimal discounts, convexity rules out price hikes

that increase profits-per-sale without sacrificing sales, and θL < x̂ is then necessary because expected

sales increase discretely as x↘ θL from trade with low-valuation buyers in monopoly matches.

13Commentary that fills in details and some proofs are in the Appendix
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It is conceptually important to highlight that offers above low-valuation buyers’ valuation separate

buyers - a buyer who accepts it must be of high-valuation - whereas offers below pool buyers - a buyer

who accepts it can have either valuation. Optimal separating offers are thus offers that are optimal

in high-valuation matches.

Proposition 3.5 (Offer Distribution over Separating Prices). The distribution of offers over sepa-

rating prices is uniquely determined by the equation,

ρθH = Π(θH |θH) = Π(x|θH) = (ρ+ (1− ρ)(1− F (x|θH)))x for x > θL

Stronger still, separating offers make zero profits in low-valuation matches, so equilibrium separating

offers must be strictly more profitable than any pooling offer in high-valuation matches (otherwise,

they would be strictly dominated) and inversely for equilibrium pooling offers, which must be strictly

more profitable in low-valuation matches than any separating offer.

Proposition 3.6 (Conditional Profitability). Given an equilibrium offer x ∈ supp(F (x|θ)), if θL < x,

Π(x̃|θH) < Π(x|θH) = Π(x′|θH) ∀ x̃ ≤ θL, x′ ∈ supp(F (x|θ)) ∩ [θL, θH ] (3.9)

whereas if x ≤ θL,

Π(x̃|θL) < Π(x|θL) ∀ θL < x̃ (3.10)

We see then that both types of sellers agree on the optimal separating offers and regard these as

the most profitable in high-valuation matches, but sellers who observe low signals care more about

profitability in low-valuation matches, so they offer lower pooling prices when the profitability edge

of these in such matches and their concern for them is sufficient.

Naturally, any trade-off between profitability in low- versus high-valuation matches that makes

one type of seller indifferent is strictly preferred or disfavored by the other type, so, in an equilibrium

with separating offers, every offer separates, only high signal sellers’ offers separate, or only low signal

sellers’ offers pool. The case that holds is determined by comparing the profitability that each type of

seller pjL would expect from a separating offer, all of which are equally profitable, versus the highest

pooling offer of θL, which would beat all separating offers.

Proposition 3.7 (Separating versus Pooling Sellers). Sellers’ offers are classified by the following

conditional profitability inequalities,

if θL < plHρθH then

All high signal seller offers separate. All low signal seller offers separate.

else if (ρ+ (1− ρ)(plHα+ plL(1− α)))θL < plHρθH ≤ θL then

All high signal seller offers separate. Some low signal seller offers separate and some pool. The

probability that a low signal seller pools, F l(θL), is given by,(
ρ+ (1− ρ)(plH(α+ (1− α)(1− F l(θL))) + plL((1− α) + α(1− F l(θL))))

)
θL = plHρθH (3.11)

else if (ρ+ (1− ρ)(phHα+ phL(1− α)))θL < phHρθH then

All high signal seller offers separate. All low signal seller offers pool.

else if ρθL < phHρθH ≤ (ρ+ (1− ρ)(phHα+ phL(1− α)))θL then

Some high signal seller offers separate and some pool. All low signal seller offers pool. The

probability that a high signal seller pools, Fh(θL), is given by,(
ρ+ (1− ρ)(phHα+ phL(1− α))(1− Fh(θL))

)
θL = phHρθH (3.12)
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else

all high signal seller offers pool / all low signal sellers pool

end if

This coarse grouping of prices is the result of a familiar ordering principle - sellers who place more

posterior weight on low-valuation matches extend offers that are more attractive (on average) to all

buyers - that is characteristic of economies in which sellers have predictive skill - heterogeneous or

not.

Moving onto the offer distributions over pooling prices, there are two cases to consider: economies

where only low signal sellers extend pooling offers and economies where both types of sellers do. In

the former, low and high signal sellers’ strategies have disjoint supports, so offer distributions F (x|θ)
keep low signal sellers indifferent by making lower pooling prices more (less) profitable in low- (high-)

valuation matches.

Proposition 3.8 (Only Low Signal Sellers Pool). If only low signal sellers extend pooling offers, offer

distributions are uniquely determined by the profitability,

Π(θL; plL) =
[
plL(ρ+ (1− ρ)(1− F (x̂|θH))) + plH(ρ+ (1− ρ)(1− F (x̂|θL)))

]
θL

= Π(x; plL) =
[
plL(ρ+ (1− ρ)(1− F (x|θL))) + plH(ρ+ (1− ρ)(1− F (x|θH)))

]
x

and aggregation equations, F (x|θL) = αF l(x), F (x|θH) = (1−α)F l(x). Furthermore, given two prices

x < x′ ≤ θL,

Π(x|θH) < Π(x′|θH) , Π(x|θL) > Π(x′|θL)

This conditional profitability relation is necessary because there are more low signal sellers in low-

valuation matches, so discounts forfeit the same amount of revenue in monopoly matches, but provide

a larger sales increase in low-valuation matches. If high signal sellers offer pooling prices, however,

the support of strategies necessarily14 overlaps over every pooling price offered by a high signal seller,

[xh, θL], and offer distributions keep both types of sellers indifferent by maintaining the conditional

profitability, Π(x|θ), of these prices. This overlapping region is followed below by a contiguous interval

of prices that are only offered by low signal sellers, and over which conditional profitability trends are

as per the logic of the previous case.

Proposition 3.9 (Some High Signal Sellers Pool). If high signal sellers offer pooling prices and xh is

their lowest pooling offer, then supp(F l)∩ supp(Fh)∩ [0, θL] = [xh, θL], over which offer distributions

are uniquely determined by the profit invariance conditions,

Π(θL|θ) = Π(x|θ) = (ρ+ (1− ρ)(1− F (x|θ)))x for θ ∈ {θL, θH}

and aggregation equations F (θL|θL) = (1 − α)Fh(θL), F (θL|θH) = αFh(θL). Whereas supp(F l) ∩
supp(Fh)c∩[0, θL] = [xl, xh], over which offer distributions are uniquely determined by the profitability,

Π(xl; plL) = Π(x; plL) =
[
plL(ρ+ (1− ρ)(1− F (x|θL))) + plH(ρ+ (1− ρ)(1− F (x|θH)))

]
x

and aggregation conditions F (x|θL) = αF l(x), F (x|θH) = (1− α)F l(x).

Furthermore, given two prices x < x′ ≤ xh,

Π(x|θH) < Π(x′|θH) , Π(x|θL) > Π(x′|θL)
14See the Appendix, but the logic is similar to that which sets the profitability trend among pooling prices that are

exclusively offered by low signal sellers.
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Jointly, Proposition 3.5, Proposition 3.8, and Proposition 3.9 imply that offer distributions F (x|θ)
are unique.

Theorem 3.1 (Unique Distributions of Offers). Equilibrium distributions of offers {F (x|θ)}θ∈{θL,θH ],

are unique.

These distributions determine the probability that low-valuation buyers find an acceptable offer, and

thus the efficiency of trade, as well as the average price at which buyers trade, and thus consumer sur-

plus. As a result, both of these aggregate statistics are uniquely determined.Equilibrium multiplicity

is due to possible shifts in mass across seller strategies at separating prices or at pooling prices that

both types offer, but only up to the point of preserving the unique offer distributions that make all

these prices equally profitable. As a result, sellers’ profits are also uniquely determined.

Corollary 3.1 (Efficiency and Welfare Outcome Uniqueness). Given an economy (ρ, α, ~θ,P(θH)), the

equilibrium trade probabilities and surplus of low- and high-valuation buyers, as well as, the profits of

each type of seller in each type of match are invariant across equilibria.

This allows me to conduct unambiguous comparative static analysis and to derive equilibrium strate-

gies, in the Appendix, through a simple algorithm that weakly orders prices by the sellers’ type, with

the highest separating offers being made by high signal sellers, below which are any separating offers

from low signal sellers or the set of pooling offers made by both types of sellers, and below which are

any pooling offers that only low signal sellers extend.

3.3 Over- and Under-bidding

In these settings, there is no winner’s curse: sellers’ value of winning is identical conditionally or

unconditionally on winning - mainly their profit-per-sale x. However, sellers do over- and under-

bid, in the sense that the optimal offer ex-post is almost always different from the one they extend.

Precision’s profit externalities will come, in part, from exacerbating the size of these mistakes, so I

will analyze them before proceeding to comparative static analysis.

Sellers’ offers are optimal conditionally on their information, however, ex-post optimality requires

conditioning on the complete information about the match - the buyer’s valuation, the existence

of competing sellers, and their type - whereas sellers’ information about each of these aspects is

incomplete. Consider optimal offers under three levels of nested information, where the seller knows

(1) the buyer’s valuation, the presence of a competing seller, and the competitor’s type, (2) the buyer’s

valuation and the presence of a competing seller, and (3) only the buyer’s valuation.

Corollary 3.2 (Optimal Prices Conditionally on Match Type). In the ordered equilibrium, condi-

tionally on the buyer’s valuation, the number of competitors, the type of the competitor,

• If the buyer’s valuation is high, the optimal competitive price is

x∗(θH , competitive, pjL type competitor) = xj.

• If the buyer’s valuation is low, the optimal competitive price is

x∗(θL, competitive, pjL type competitor) = min(xj , θL).

whereas, conditionally on only the buyer’s valuation and the number of competitors,

• If the buyer’s valuation is high, the optimal competitive price is x∗(θH , competitive) = x̂.

• If the buyer’s valuation is low, the optimal competitive price is x∗(θL, competitive) = xl.
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and, conditionally on only the buyer’s valuation,

• If the buyer’s valuation is high, the set of optimal price offers is x∗(θH) = [x̂, θH ].

• If the buyer’s valuation is low, the optimal price is x∗(θL) = xl.

Whereas, if the seller knows that it has no competitors and the buyer’s valuation, then its optimal

price offer is equal to the valuation.

The claims about optimality conditionally on only the buyer’s valuation are immediate from the

profitability trends that offer distributions generate15, whereas the about optimality conditionally on

also the level and type of competition are immediate from the point that lower prices in each type

of sellers’ support, which are less profitable in monopoly matches, are incentivized by being more

profitable in competitive matches.

Since equilibrium distributions of prices are atomless, almost every offer that sellers make is subop-

timal under the perfect information posterior: if they sell, their offer in that particular match was too

low (over-bid buyer surplus), and inversely if they do not (under-bid buyer surplus). However, much

of this regret is unavoidable, as sellers do not have information about the number of competitors, and

even knowing a competitor’s type, there would remain uncertainty about the price it would offer. A

part of regret is linked to the buyer’s valuation, though, as winning (losing) makes having been in a

high (low) match more likely, and it is here that precision helps minimize regret.

Precision shapes a seller’s distribution of posteriors, hence types, in two ways. First, it changes

how often the seller’s signal correctly classifies the buyer; in other words, how often the seller’s type is

relatively low or high in matches with a buyer of each valuation. Second, it changes how extreme its

posterior valuation beliefs are on each signal; in other words, how large or small its type is. Together,

these bring the expected sales sellers matches with each type of buyer closer to the perfect information

forecast P(sale at price x|θ), which allows them to improve their profitability by trading off sales with

mark-ups more precisely.

3.4 Comparative Statics

With a clear understanding of the equilibrium structure, I can consider the effects of competition

and precision on prices, trade efficiency, and the level/distribution of aggregate surplus between and

within each side of the market.

Buyer welfare is parsed into the average utility that buyers of each valuation obtain,,

Wb(θ) = ρE[u(1,min(θ, xi); θ)] + (1− ρ)E[ max
i∈{1,2}

u(1,min(θ, xi); θ)] (3.13)

where xi are iid draws from the equilibrium distributions of offers F (xi|θi).
Sellers are homogeneous with ex-ante profits,

M(ρ̃) = ρ̃+ 2(1− ρ̃) (3.14)

Π =
[

M(ρ̃)︸ ︷︷ ︸
number of matches

P(sale at price x, j)︸ ︷︷ ︸
probability of selling

x︸︷︷︸
profits-per-sale

]
(3.15)

where the expectation is over the events that a seller observes each signal j ∈ {l, h} in a match with

a buyer of each valiation θi ∈ {θL, θH} and offers a price x ∼ F j .
15Maintaining profits in each type of match over separating or overlapping pooling prices, and increasing (decreasing)

profits in low- (high-) valuation matches of lower prices that only low signal sellers offer.
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Lastly, because inefficient trade occurs solely from low-valuation buyers being priced out, efficiency

is measured by the probability that a low-valuation buyer trades,

Q = ρF (θL|θL) + (1− ρ)Px1,x2∼F (·|θL)(min(x1, x2) ≤ θL) (3.16)

Less interestingly, I find that competition increases efficiency and buyer surplus. Sellers, antici-

pating “more” competitors in the average match, offer more attractive prices to sustain enough sales.

Since sellers decrease prices across the board, all buyers obtain greater surplus, and low-valuation

buyers find more acceptable offers, thus boosting trade efficiency and aggregate surplus.

More interestingly, I find that precision has nuanced effects, which closely depend on the level

of adverse selection faced by sellers. The severity of adverse selection is determined by demand-side

properties (a) valuation heterogeneity, θH − θL, and (b) proportion of high-valuation buyers. When

adverse selection is severe, imprecisely informed sellers prioritize markups (over sales), and trade

increases alongside precision, which decreases the probability of misclassification and increases the

share of pooling offers upon a low signal much more than the share of separating offers upon a high

signal. It increases low-valuation buyer surplus and, when trade increases strongly upon low signals,

even that of high-valuation buyers. When adverse selection is mild, however, imprecisely informed

sellers prioritize sales (over markups), and precision can increase the share of separating offers upon

a high signal much more than the share of pooling offers upon a low signal to such a degree that it

decreases trade and the surplus of all buyers. For sellers, precision is always individually beneficial,

but it changes the nature of competition, so it has profit externalities for peers. This is why when all

sellers obtain more precise signals16, their profits will sometimes decrease. The settings most prone to

this large negative profit externality are exactly the ones where precision is most beneficial for buyers:

those where adverse selection is severe and the level of competition is high.

3.4.1 Competition

When buyers obtain more offers (lower ρ), sellers expect them to have more alternatives, particularly

more alternatives below any price. Given a fixed set of strategies, this reduces expected sales at any

price. Sellers respond by lowering prices to restore some sales, and since strategies are mixed, this is

done by shifting mass towards lower prices. As such, the general equilibrium effect on sellers’ strategies

reinforces the partial equilibrium effect on the number of offers, both increasing buyer surplus and

trade.

I take a closer look at this dynamic in the more relevant set of economies, those with some

separating offers, and thus where predictive skill has a role. The highest overall price x does not depend

on the level of competition - only on the posterior of sellers who observe a high signal (Proposition 3.3).

However, the probability of prices below is closely related to the level of competition. Inspecting the

distributions of offers in each type of match,

F (x|θ; ρ2) < F (x|θ; ρ1) , ρ1 < ρ2

In other words, when there is more competition, sellers place more mass on lower prices in both

types of matches (first-order stochastic dominance relation). As a result, both types of buyers obtain

greater surplus, and the additional mass on pooling prices in low-valuation matches also increases

trade. However, sellers’ ex-ante profits decrease. This is intuitive, but to understand exactly why,

16Seller homogeneity constrains me to these precision counterfactuals.
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recall that the sales a matched seller expects from an offer of x are,

P(sale at a price x|j) = ρ(pjL1(x ≤ θL) + pjH) + (1− ρ)
(
pjL(1− F (x|θL))1(x ≤ θL) + pjH(1− F (x|θH))

)
These decrease both because competitive matches are more likely (ρ and 1−ρ terms) and because the

distribution of competitor bids shifts mass towards lower prices (F (x|θ) terms), making any offer is

less profitable in any match. It is true that there exists a compensating effect, as competition allows

sellers to match with more buyers (larger M(ρ̃) = ρ̃ + 2(1 − ρ̃)), but this is insufficient. In fact, it

does not affect that change of ex-ante profits, because the average number of matches also appears

in the denominator of sellers’ conditional probabilities of being in a monopoly or competitive match,

ρ = ρ̃
M(ρ̃) and 1− ρ = 2(1−ρ̃)

M(ρ̃) , so it cancels out,

M(ρ)Π(pjL; ρ)

= Ex∼F j
[
ρ̃(pjL1(x ≤ θL) + pjH) + 2 ∗ (1− ρ̃)

(
pjL1(x ≤ θL)(1− F (x|θL)) + pjH(1− F (x|θH))

)]
As such, interim and ex-ante profits decrease with competition17.

Proposition 3.10 (ρ Comparative Statics). Consider two economies that differ only in the level of

competition ρ1 < ρ2. Then,

• Distributions Strictly Increasing: F (x|θ; ρ2) < F (x|θ; ρ1) for θ ∈ {θL, θH}.

• Buyer Surplus Strictly Increasing: Wb(θ; ρ2) <Wb(θ; ρ1) for θ ∈ {θL, θH}.

• Trade Efficiency Increasing: Q(ρ2) ≤ Q(ρ1).

• Profits Strictly Decreasing: Π(ρ1) < Π(ρ2).

I illustrate these effects in Figure 1.

(a) Buyer Surplus and Efficiency (b) Seller Surplus

Figure 1: Welfare and Efficiency Effects of Competition The common parameters are
[θL, θH ,P(θL)] = [1, 3, 0.5] for buyers and α = 0.7 for sellers’ precision.

3.4.2 Precision

Competition is traditionally dictated only by the number of offers that a buyer is expected to obtain.

However, when sellers have information about preferences, its precision also affects the distribution of

offers and thus the degree of competition that sellers expect for a buyer with each valuation.

17ρ̃ decreases if and only if ρ does, so F j(x; ρ) increases if and only if ρ̃ decreases. After canceling out the average
number of matches, it follows that the terms within the expectation increase pointwise in ρ for every x.
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As we know from the structure of equilibria, the more confident a seller is about being in a

high-valuation match, the more sales it expects at any price, including separating prices. Precision,

therefore, incentivizes sellers who observe high (low) signals to extend more (fewer) separating offers

upon a high (low) signal; in other words, precision makes the offers of sellers who observe high (low)

signals less (more) competitive. The net effect of greater precision among sellers, whether we consider

discrete or marginal counterfactuals, is a combination of this impact on the strategy of each type of

seller (low and high signal type effect) and its impact on the distribution of seller-types in matches

with buyers of each valuation (classification effect).

Buyer Surplus and Efficiency Pooling prices benefit high-valuation buyers, who obtain infor-

mation rents, and low-valuation buyers, who experience greater competition for their business. This

is why the classification effect of precision hurts high-valuation buyers and benefits low-valuation buy-

ers, and this generally determines the sign of the relationship between precision and their surplus;

however, precision’s type effects (for each signal value) can dominate and reverse these relations.

Type effects are primarily determined by the heterogeneity of buyers’ valuations. Imprecisely

informed sellers face severe adverse selection in economies where valuations are sufficiently heteroge-

neous, so they prioritize high markups. Greater precision results in a small increase in the share of

separating offers upon a high signal (weak high signal type effect) but a large increase in the share of

pooling offers upon a low signal (strong low signal type effect). As such, precision allows low-valuation

buyers to trade more often and at lower prices, with the classification effect (more sellers observe low

signals in low-valuation matches) and strong low signal type effect dominating the weak high signal

type effect; indeed, even high-valuation buyers benefit from precision, due to misclassification, when

the low signal type effect is strong enough.

However, imprecisely informed sellers face only mild adverse selection in economies where valua-

tions are relatively homogeneous, so they prioritize sales. Greater precision then results in a small

increase in the share of pooling offers upon a low signal (weak low signal type effect) but a large

increase in the share of separating offers upon a high signal (strong high signal type effect). Unless

the increase in precision is large enough for sellers to rarely misclassify buyers, this technological leap

then hurts all buyers and the efficiency of trade. A simple application of the product rule in the

monopoly setting illustrates why,

F (θL|θL;α) = αF l(θL;α) + (1− α)Fh(θL;α)

∂F

∂α
(θL|θL;α) = F l(θL;α)− Fh(θL;α)︸ ︷︷ ︸

≥0

+α
∂F l

∂α
(θL;α)︸ ︷︷ ︸
>0

+(1− α)
∂Fh

∂α
(θL;α)︸ ︷︷ ︸
<0

Therefore, when precision is still too low (large 1 − α), the increase in separating offers upon a

high signal can dominate (high signal type effect), whereas if precision is higher, the decrease in

misclassification (classification effect) and increase in pooling offers upon a low signal (low signal type

effect) overcome it..
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(a) Similar Valuations: [θL, θH ] = [1, 2] (b) Dissimilar Valuations: [θL, θH ] = [1, 10]

Figure 2: Buyer Surplus and Efficiency Effects of Precision The common parameters are
P(θL) = 0.5 for the mass of low-valuation buyers and ρ = 0.6 for the level of competition.

More generally, when competition is high enough, the probability of low-valuation buyers not

trading has a simple form that immediately highlights how different factors impact the relationship

between precision and efficiency.

Proposition 3.11. The exists a 0 < ρ̃(α, ~θ,P(θH)) threshold level of competition, which is decreasing

in θH
θL

and P(θH), such that in any economy with ρ ≤ ρ̃(α, ~θ,P(θL)), such that only high signal sellers

separate, some of their offers pool, and the probability that a low-valuation buyer does not trade is

given by,

1− F (θL|θL) =
ρ

1− ρ

max
(

P(θH)
P(θL)

(
θH
θL
− 1
)

α
1−α − 1, 0

)
P(θH)
P(θL)

α
1−α

α
1−α + 1

(3.17)

Beyond a point then, competition determines the magnitude but not the sign of the relation between

precision and efficiency. The sign depends on the level of precision and demand-side properties, as

foreshadowed, through the severity of adverse selection. Pooling offers are subject to more severe

adverse selection when its cost per instance is greater - determined by the spread of valuations -

and instances are more probable - determined by the proportion of high-valuation buyers. I focus

on the more nuanced demand side statistic of valuation heterogeneity throughout, but it should be

understood that the proportion of high-valuation buyers has qualitatively similar effects on equilibria.

Profits Market-wide advances in precision individually benefit sellers but also generate profit ex-

ternalities. When the level of competition is low (high ρ), the individual benefit dominates and profits

increase with precision. However, when the level of competition is high enough, profit externalities

can dominate and revert this positive relation. In particular, precision makes the offers of sellers who

observe a low (high) signal more (less) competitive, and this low (high) signal type effect is strong

(weak) in economies where buyers’ valuations are very heterogeneous. In these economies, the net

profit externality of precision is therefore negative and large, so when the individual benefit is small

(such as when classification is already fairly precise), the externality dominates, causing profits to

decrease with precision.
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(a) Similar Valuations: [θL, θH ] = [1, 2] (b) Dissimilar Valuations: [θL, θH ] = [1, 10]

Figure 3: Seller Surplus Effects of Precision The common parameters are P(θL) = 0.5 for the
mass of low-valuation buyers and ρ = 0.1 for the level of competition.

4 Endogenous Quality Setting

Although pricing is one of the main use cases of preference information, another that is at least

as important and particularly prevalent in sellers’ recent data analytics applications is production -

the problem of choosing what to offer to each buyer. Abstracting away from this problem has been

convenient analytically and even practically negligible in situations where buyers perceive goods as

highly substitutable or sellers’ production is inflexible. However, to study settings where product

offerings differ significantly (in quantity, quality, or probability of trade), I will incorporate product

choice by allowing sellers to pick the quality of the goods they offer buyers. Although many of the

core insights from exogenous product choice economies will generalize, some in exact form and others

with close analogs, the significant differences lend nuance to the effects of precision on welfare and

efficiency. I will also leverage the additional structure in these settings to incorporate heterogeneous

seller precision in the aforementioned form of low-precision amateurs and high-precision sharks.

4.1 Seller Problem and Equilibrium Concept

The interesting cases of endogenous quality are those where the efficient quality of trade with low-

and high-valuation buyers differs. This requires some cost convexity, which I introduce through a

piecewise-linear cost function that kinks at the efficient qualities of trade with low- and high-valuation

buyers.

Assumption 4.1 (Piecewise Linear Costs). The cost function φ(·) is piecewise linear, convex, strictly

increasing with

φ(q) =


κLq q ≤ q∗L
κLq

∗
L + κmq q∗L < q ≤ q∗H

κLq
∗
L + κm(q∗H − q∗L) + κHq q∗H < q

where 0 < κL < θL, θL < κm < θH , and θH < κH and the efficient qualities of trade with a buyer of

each valuation are given by,

q∗i = argmax
q

θiq − φ(q) (4.1)
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Piecewise linearity makes the marginal cost of quality revisions locally constant, lending consider-

able tractability18. Since sellers can choose quality and its valuation among buyers is heterogeneous,

they have the ability to improve the profitability of trade with each type of buyer by going beyond

single quality-price offers and instead offering menus ((qL, xL), (qH , xH)) composed of a pair of quality-

price contracts, where the contract (qi, xi) is intended for a buyer of valuation θi. When both contracts

are identical, the menu is equivalent to a single contract offer, but we will see that such menus are

never optimal, the first sign that the exogenous product choice assumption imposes serious economic

limitations.

There are three components to the profits that a matched seller expects from a menu: (1) the

profits per sale from each contract, (2) the probability that a buyer of a given valuation chooses a

contract, and (3) the probabilities that the buyer has each valuation. Profits per sale from a contract,

π(qi, xi) = xi−φ(qi), are simply the difference between the lump sum price xi and the seller’s cost of

producing the quality qi. The probability that a buyer of a given valuation chooses a contract is the

probability that it has no better offers. By the Revelation Principle, it is sufficient to restrict attention

to individually rational and incentive-compatible menus, so the probability that a buyer of valuation

θi chooses the contract (qj , xj) is zero if i 6= j, and otherwise equal to the sum of the probability that

the seller’s offer is the only one (ρ) plus the probability that it has an inferior offer from another seller.

To compute the probability that the seller’s offer beats that of a competitor, I define the marginal

distribution Fi(ui) = F (ui × [0,∞]|θi) over indirect utilities offered to θi valuation buyers by sellers

of each type via the joint distribution of utilities in such matches,

F (uL, uH |θi) =
∑

e∈{a,s}
j∈{l,h}

µ(e)P e(j|θi)F e,j(uL, uH) (4.2)

where µ(e) is the mass of sellers with precision αe, P
e(j|θi) is the proportion of them that would

observe j signals when matched with a θi valuation buyer (and so that would be of type pe,jL ), and

F e,j(uL, uH) is the joint distribution over indirect utility offers implied the menus that sellers of type

pe,jL mix over. Therefore, the probability that a θi valuation buyer chooses a contract (qi, xi) contract

is Ψi(ui) = ρ+(1−ρ)Fi(ui), where ui = u(qi, xi; θi) is the indirect utility it offers θi valuation buyers.

Lastly, a matched seller’s probability that the buyer has low and high-valuation is given by its type

pe,jL and the respective complementary probability 1−pe,jL . Since each contract (qi, xi) determines the

seller’s expected profits in a match with each type of buyer, the expected profits from the menu are

therefore given by the average of these,

Πe,j(qL, xL, qH , xH) = pe,jL ΨL(u(qL, xL; θL))π(qL, xL) + pe,jH ΨH(u(qH , xH ; θH))π(qH , xH)

=
∑
i=l,h

pe,ji Ψi(u(qi, xi; θi))π(qi, xi) (4.3)

weighted by the seller’s valuation beliefs.

4.2 Seller Strategies

I have so far allowed for both pooling and separating menu offers; however, as the notation suggests,

only separating menus are offered in equilibrium.

Corollary 4.1 (No Pooling in Equilibrium). Equilibrium menus separate buyers of each valuation.

18The main results are not dependent on this restriction.

20



q∗L = 2 q∗H = 4

x

φ(q)

θHq

θLq
(qp, xp)

uL

uH

π(q∗H , xs)

π(q∗L, xL)

Figure 4: Example with θH = 4 , θL = 2 , φ(q) = 1
2x

2. Contracts are depicted as points in the
(q, x) space. Implied utilities are given by the vertical distance of a contract’s y-axis coordinate to
the zero utility indifference curves of the respective θi valuation buyers, while profits per sale are
given by the vertical distance to the seller’s cost function φ(q). The blue region represents the set
of pooling contracts that are individually rational for buyers of either valuation, imply non-negative
profits, and are not dominated by another pooling contract.

A candidate pooling offer (qp, xp) lies on dashed iso-utility lines for buyers with low and high-
valuation; I follow these to the right and left, respectively, until reaching the efficient qualities of
trade with each type of buyer at prices xi = θjq

∗
i − u(qp, xp; θi). This alternative separating bid

((qL = q∗L, xL = xp − θL(qp − q∗L), (qH = q∗H , xH = xp + θ(q∗H − qp)) remains incentive compatible and
strictly dominates the pooling offer: the same utility to buyers of either valuation (hence the same
probability of winning) but strictly higher profits per sale.

Cost convexity is at the core of this result. It is the reason why a pooling contract can always be

improved through a separating revision that adds quality to the high contract, at a price (above

marginal costs) only high-valuation buyers are willing to pay, and reduces the quality of the low,

in exchange for a discount only low-valuation buyers are interested in. I provide a simple graphical

representation of this procedure in Figure 4. Beyond its economic relevance, this result is analytically

convenient because it eliminates both classical threats to existence of equilibrium (as in Rothschild

and Stiglitz (1976)) and a more complicated diversity of offers (as in Lester et al. (2019)).

Beyond separating buyers, equilibrium menus have quite a bit of additional structure. In particular,

the quality-price terms of each contract featured in a menu are closely linked to the utility they

offer each type of buyer. The forward direction is obvious since incentive constraints and individual

rationality imply buyers will always choose their intended contract,

(ICi) : u(qi, xi; θi) ≥ u(q¬i, x¬i; θi) ∀i ∈ {l, h}

(IRi) : u(qi, xi; θi) ≥ 0
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so the indirect utility offered to buyers of each respective valuation by a menu is simply,

uL = θLqL − xL
uH = θHqH − xH

The backward direction follows from the conditions that profit maximality imposes on optimal of-

fers, which generate a bijection between the indirect utility terms (uL, uH) and quality-price terms

((qL, xL), (qH , xH)) of any equilibrium menu.

Theorem 4.1 (Converting to Indirect Utilities). Consider an equilibrium menu ((qL, xL), (qH , xH))

with associated indirect utilities (uL, uH). Qualities are then given by,

qL(uL, uH) =

uH−uL
∆θ uH − uL < q∗L∆θ

q∗L uH − uL ≥ q∗L∆θ
qH(uL, uH) =

uH−uL
∆θ uH − uL > q∗H∆θ

q∗H uH − uL ≤ q∗H∆θ
(4.4)

and prices by xi = θiqi − ui, where ∆θ = θH − θL.

Therefore, when an incentive constraint binds at an optimal menu, the difference in utilities uH − uL
uniquely determines the qualities offered in each contract, while the level of these utilities then uniquely

determines their respective prices. Whereas, when both incentive constraints are slack, it is optimal

to offer efficient qualities to each type of buyer, which is why I will refer to these menus as dually

efficient, and prices follow uniquely in the same fashion.

This result connecting the quality-price form of menus to their associated indirect utilities is

standard - referred to as the parametric-utility approach (Rochet and Stole (2006)) - and originates

from the fact that seller surplus (profits per sale) equals the gains from trade Si(q) = θiq − φ(q) net

of buyer surplus,

π(qi, xH) = xi − φ(qi) = (xi − θiqi) + (θiqi − φ(qi)) = Si(qi)− u(qi, xi; θi)

Profits thus increase both from minimizing buyer surplus and maximizing trade efficiency. As such,

consider the optimal way to offer a pair of utilities (uL, uH). If it is feasible to do so with a dually

efficient menu, while respecting incentive constraints, then this is optimal, for it generates more social

surplus. If it is not possible and a buyer’s incentive constraint would be violated by such an offer, then

a problematic ICH (ICL) constraint is corrected most profitably by under-providing (over-providing)

quality in the low (high) contract. In these cases, a valuation θi buyer - whose incentive constraint

binds at the optimal menu that offers (uL, uH) - is indifferent between their contract and the one

intended for a buyer with the opposite valuation, so uH − uL = q¬i∆θ.

Since optimal offers can be expressed in terms of indirect utilities, it is convenient to recast the

strategy of each type of seller pe,jL as a distribution F e,j(uL, uH) over pairs of utility offers (uL, uH).

This not only reduces the dimension of the space of offers, but also directly links them to buyer

surplus. In this notation, the profits that a type pe,jL seller expects from an offer (uL, uH) are,

Πi(uL, uH) = Ψi(ui)πi(uL, uH)

Πe,j(uL, uH) =
∑
i=l,h

pe,ji Πi(uL, uH)

Therefore, the level of indirect utilities (uL, uH) determines both the probability of winning in con-

tested matches Fi(ui) and the buyer surplus part of profits per sale π(uL, uH) = S(uL, uH)−ui, while
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the difference in utilities, uH −uL, determines the social surplus of profits per sale. Given the sample

space Ω = [0, S∗L]× [0, S∗H ], Borel σ-algebra, and set of countably additive probability measures P over

it, this concise specification of the seller’s problem allows me to introduce the equilibrium concept.

Definition 4.1 (Bayes-Nash Equilibrium). An equilibrium is a vector of strategies {F e,j}e∈{a,s}
j∈{l,h}

, for

each type of seller, such that,

supp(F e,j) ⊆ argmax
(uL,uH)

Πe,j(uL, uH) ∀ (e, j) ∈ {a, s} × {l, h}

4.3 Equilibrium Structure

4.3.1 Corner Cases: Monopoly and Perfect Competition

We build intuition starting at the corner cases of competition, as in economies with exogenous quality.

The screening problem of a monopolist is well understood from Mussa and Rosen (1978). A type pe,jL
monopolist thus solves

max
uL,uH≥0

pe,jL (SL(uL, uH)− uL) + pe,jH (SH(uL, uH)− uH)

where incentive compatibility is implicit in the functional form of social surplus terms. We can ignore

menus with (1) uH−uL > q∗L∆θ or (2) uL > 0, as they would not entail greater efficiency of trade and

strictly lower profits per sale from buyers of at least one valuation than the offer (uL, uH) = (0, q∗L∆θ).

The incentive constraint of high-valuation buyers, therefore, binds at an optimal menu, and the optimal

quality in the low contract. The only trade-off for a monopolist is between the efficiency of trade with

low-valuation buyers and the share of the efficient social surplus S∗H that it captures in trade with

high-valuation buyers. Sellers have piecewise linear costs that give rise to a bang-bang monopolist

outcome, with a fully efficient or inefficient offer, depending on whether the seller’s type pe,jL is beyond

a threshold belief p∗L determined by the marginal benefit of increasing the indirect utility offered to

high-valuation buyers,

p∗L
θL − κL

∆θ︸ ︷︷ ︸
efficiency gain

− p∗H︸︷︷︸
rent loss

(4.5)

The left-hand term is the marginal gain in efficiency made possible by increasing the indirect utility

offered to high-valuation buyers. This relaxes their incentive constraint and allows the seller to provide

a more efficient quality to low-valuation buyers, increasing the gains from trade with them and thus

the profitability of these sales. The right-hand term represents the rents surrendered by making a

more generous offer to high-valuation buyers; in other words, of offering the efficient high quality at

a strictly lower price.

Proposition 4.1 (Monopoly). If ρ = 1, a seller of type pe,jL offers a menu,

(uL, uH) =

(0, 0) if pe,jL < p∗L

(0, q∗L∆θ) if pe,jL ≥ p∗L
(4.6)

for the threshold probability,

p∗L =
θH − θL
θH − κL

(4.7)

We observe properties familiar from economies where quality was exogenous, mainly the link between

precision and offer dispersion, the monotonicity of efficiency and generosity with a seller’s type, the
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nonmonotonicity between precision and welfare aggregates, and the dependence of these relations on

preference heterogeneity ∆θ, which explicitly determines the size of the efficiency gain θL−κL
∆θ from

relaxing high-valuation buyers’ incentive constraint. In detail, when buyers’ valuations are sufficiently

homogeneous, imprecisely informed monopolists always trade efficiently (pe,jL > p∗L for both signals

j ∈ {l, h}), so additional precision can decrease the efficiency of trade (pe,hL < p∗L for αe large) and

hurt high-valuation buyers (low-valuation buyers always get zero surplus). However, when buyers’

valuations are sufficiently heterogeneous, imprecisely informed monopolists ration low-valuation buyers

upon the high and even, sometimes, the low signal, so precision increases the efficiency of trade and

can also allow high-valuation buyers to obtain some information rents from misclassification. These

ordering, efficiency, and welfare relations extend when competition is imperfect, with the usual caveat

that competition allows low-valuation buyers to obtain some of the gains from trade and thus benefit

from precision, so long as it is not too efficiency-reducing.

The other corner where sellers are guaranteed to bid against another seller in every match (ρ = 0) is

also well understood, as each match again becomes a setting of Bertrand price competition. Therefore,

sellers make dually efficient offers and buyers capture all gains from trade.

Proposition 4.2 (Perfect Competition). If ρ = 0, the unique Bayes-Nash equilibrium involves almost

every seller offering ((qL, xL), (qH , xH)) = ((q∗L, φ(q∗L)), (q∗H , φ(q∗H))) with probability 1.

Second-degree price discrimination does not change the point that predictive skill is of little use under

perfect competition. Competition also promotes efficiency and consumer surplus when it is imperfect,

but it has different effects on how much sharks and amateurs use their predictive skill, as the latter’s

offers are dually efficient and thus invariant to their signal in more settings. Lastly, note that the

combination of imperfect competition and heterogeneous seller precision allows me to isolate its profit

externalities by fixing the precision of one group of sellers (for example, amateurs) and varying the

precision of the other (for example, sharks). I find that sellers become more profitable through their

own predictive skill, and sometimes also that of competitors.

4.3.2 Interior Cases: Imperfect Competition

In this section, I discuss some general properties satisfied by the menus of a candidate equilib-

rium. Each has intuitive appeal, either from an economic standpoint or because of the mathematical

tractability that they impart. By leveraging these in conjunction with the optimality conditions of

sellers’ problems, I can solve for this equilibrium analytically and obtain a complete characterization.

In the Appendix, I show that these properties hold in any equilibrium where at least some offer rations

low-valuation buyers.

There are three main areas that benefit from additional structure: (1) the distributions over

indirect utilities offered by sellers in low- and high-valuation matches, Fi, (2) the relationship of

incentive compatibility constraints to the generosity (indirect utility) of menus, and (3) the relationship

between the generosity of a menu with the type of seller who offers it.

The distributions of indirect utilities Fi offered in each match are weighted averages of each type

of seller’s mixed strategy, so they inherit the properties of these strategies.

Claim 4.1. The equilibrium marginal distributions over indirect utilities Fi for i ∈ {l, h},

1. are atomless.

2. have a connected support of low utility offerings ΥL = [uL, uL].
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3. have a support of high utility offerings ΥH = ∪e∈{a,s},
j∈{l,h}

[ue,jH , ue,jH ], made up of the contiguous bids

by type pe,jL sellers.

4. are continuously differentiable with densities fi in the interior and one-sided derivatives at the

boundaries.

By avoiding atoms and gaps in the supports of each type of seller’s mixture, erratic behavior is

curtailed. It is never optimal to bunch up and compete at a single point in the space of utility

offers, as one might see in the corner cases of monopoly and Bertrand, nor are there discontinuous

jumps in generosity among sellers of the same type. While continuous densities allow me to consider

marginal incentives, which helps convey economic intuition and solve for the equilibrium via a standard

differential system.

As in the closely related work of Lester et al. (2019) and Garret et al. (2019), a property called

ordering, which refers to an equilibrium where ranking menus by the utility offered to low- or high-

valuation buyers is identical, lends a great degree of tractability. This property turns out to be

necessary in any equilibrium where the incentive constraint of low-valuation buyers is slack in every

menu that is offered, and a sufficient condition for this is the assumption that sellers cannot profitably

trade the efficient high quality with low-valuation buyers.

Assumption 4.2 (No ICL Cost Condition). The piecewise linear cost function φ(·) is such that,

θLq
∗
H ≤ κLq∗L + κm(q∗H − q∗L) (4.8)

Claim 4.2. Low-valuation buyers’ incentive constraint never binds in equilibrium menus.

Eliminating the possibility of a binding low-valuation buyer constraint means that high-valuation

buyers always obtain their efficient quality (q∗H), but low-valuation buyers are rationed (qL < q∗L)

whenever the offer intended for them is part of a menu in which high-valuation buyers’ incentive

constraint binds.

I will focus on equilibria in which offers are (a) ordered by their generosity, but also (b) monotone

in the seller’s type, meaning that generosity weakly increases with the seller’s belief of being matched

with a low-valuation buyer pe,jL , as in the ordered equilibria of economies with exogenous quality.

Claim 4.3. Given two equilibrium menus (uL, uH) and (ũL, ũH) offered by sellers of respective types

pL and p̃L with ui > ũi for some i ∈ {l, h},

1. It is also true that u¬i ≥ ũ¬i and strictly so if both menus are offered by sellers of the same type.

2. The gap between low and high utilities uH − uL increases strictly with generosity.

Due to Theorem 4.1, the efficiency of any menu is directly pinned down by the difference in its utility

offers uH − uL, and since low-valuation buyers’ incentive constraint does not bind in equilibrium

menus, a larger difference in utility offers only improves efficiency - weakly raising the quality of

low trade towards q∗L. Orderedness in generosity thus follows from the complementarity between

relaxing the incentive compatibility constraint of a high-valuation buyer (through a more generous

uH term) - which permits more profitable sales to low-valuation buyers - and increasing low sales

(through a more generous uL term). In equilibrium, the first effect dominates - sellers face stronger

incentives to increase the generosity of their high- versus low-valuation offer - so that the difference in

utilities uH−uL and, consequently, efficiency increases weakly with generosity. This upward efficiency
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progression generates a natural grouping of menus, with the least generous menus also being the least

efficient, but above a generosity threshold, becoming dually efficient.

Equilibrium profits conditionally on matching with a low (high) buyer, then provide the incentives

that order the offers of sellers with different interim valuation beliefs (types). These give rise to the

second ordering relation, which links a seller’s type to the generosity of its offers. In particular, the

profitability of menus in low- (high-) valuation matches increases (decrease) with their generosity and

lead sellers who place more posterior weight on low-valuation matches to extend more generous offers.

Claim 4.4. Given two equilibrium menus (uL, uH) and (ũL, ũH) offered by sellers of respective types

pL and p̃L with ui > ũi for some i ∈ {l, h},

1. Profitability conditionally on matching with a buyer of low- (high-) valuation is increasing (de-

creasing) in generosity,

ΠL(uL, uH) ≥ ΠL(ũL, ũH) and ΠH(uL, uH) ≤ ΠH(ũL, ũH)

with strict inequalities if high-valuation buyers’ incentive constraint binds at (ũL, ũH)

2. Generosity is weakly increasing in the seller’s belief of being matched with a low-valuation buyer,

pL > p̃L, and strictly so if high-valuation buyers’ incentive constraint binds at (ũL, ũH).

3. Each support Υi = [ui, ui] is such that ui ≤ S∗i . Further, there exists a udei ∈ [ui, ui] such that

all ui < udei are in ICH binding menus and all ui ≥ udei are dually efficient.

The origin of this conditional profit monotonicity is clear when we consider the first-order condition

satisfied by the bids of sellers offering menus at which high-valuation buyers’ incentive constraint

binds,

0 = pe,jH
∂ΠH

∂uH
(uH , uL) + pe,jL

∂ΠL

∂uH
(uH , uL)︸ ︷︷ ︸
>0

0 = pe,jL
∂ΠL

∂uL
(uH , uL)

When high-valuation buyers’ incentive constraint binds at a menu, greater generosity toward them

(larger uH) relaxes the constraint and makes low trade more profitable, so the term ∂ΠL
∂uH

(uH , uL) is

strictly positive. As such, the profits from high-valuation sales of constrained menus (ΠH) are locally

decreasing in generosity towards high-valuation buyers (uH) but invariant in that towards the low

(uL), while their profits from low-valuation sales (ΠL) are increasing generosity towards high-valuation

buyers and at a local maximum with respect to low-valuation buyer generosity. When we consider

the set of constrained menus, the least generous are offered by the sellers who are comparatively

more concerned about the profitability in high-valuation matches, mainly those sellers of the lowest

type pe,jL . The efficiency-generosity relation then places these constrained menus below any dually

efficient ones, so sellers who are sufficiently concerned about low-valuation match profits offer the

latter (dually efficient) menus. Incentive constraints are slack among dually efficient menus, however,

so marginal changes in the generosity of the contract offered to a buyer of either type does not affect

the profitability of the paired contract (by Theorem 4.1). The term ∂ΠL
∂uH

(uH , uL) is, therefore, equal
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to zero among dually efficient offers, and these satisfy the pair of equations,

0 =
∂ΠH

∂uH
(uH , uL)

0 =
∂ΠL

∂uL
(uH , uL)

implying that dually efficient offers are equally profitable and that all sellers - irrespective of their

type - are indifferent between them. The most that we can necessarily say about the relation between

a seller’s type and dually efficient menus is that the type must be high enough for the seller to offer

one. Any additional relation between sellers’ type and the generosity of dually efficient menus is not

just unnecessary but unappealing because it would allow precision to shape the share of surplus that

buyers of each valuation obtain, purely due to a particular equilibrium selection rule rather than an

essential and ubiquitous effect. Instead, I consider the unique equilibrium where any seller has the

same distribution of dually efficient offers conditionally on making any.

Ordering in economies with endogenous quality, therefore, differs from that in economies with

exogenous quality. Principally, in the latter, the mass that each type of seller places on inefficient

offers (price larger than θL) can be arbitrarily shifted while preserving the aggregate offer distribution,

while among efficient offers (price lower than θL) the lowest ones must be offered by sellers of the largest

type (unless all offers are efficient). Whereas in economies with endogenous quality, the opposite is

true, as inefficient offers must be strictly ranked by the type of seller who offers it, whereas efficient

offers are not.

I close by connecting these points about profitability, generosity, and a seller’s type to the benefits

of precision. With two information structures (levels of precision), each of which features a random

variable (signal) that can take two possible values (low or high), there are four types of sellers at the

interim stage, corresponding to each precision and signal combination. And, sellers with the highest

precision have the highest conviction about their signals and the most extreme beliefs on each signal,

ps,hL < pa,hL < pa,lL < ps,lL (4.9)

As such, in an equilibrium where at least some inefficient menus are offered, the least generous menus,

towards a buyer of either valuation, are offered by sharks who observe high signals, while the most

generous are offered by sharks who observe low signals. Amateur offers have intermediate generosity

and only overlap with those of sharks if they are dually efficient. This means that in low- (high-)

valuation matches, a greater share of sharks (than amateurs) observe signals that cue them to place

their offers at the top (bottom) of the generosity distribution, where the most profitable low- (high-)

valuation match menus are found, and makes them more profitable than amateurs in the average

match - the benefit of predictive skill.

4.4 Comparative Statics

I will perform an analogous comparative static analysis to Section 3.4, highlighting points of com-

monality and departure. The aggregate statistics for welfare and trade efficiency are similar after

adjusting for the fact that strategies are expressed in the space of indirect utility offers and that

sellers are heterogeneous. Recycling notation, the welfare of each type of buyer follows as,

Wb(θ) = ρE[ui] + (1− ρ)E[max(ui, ũi)] (4.10)
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where ui are iid draws from the cmarginals Fi(ui). Profits of sellers with precision αe are given by,

Πe = E
[

M︸︷︷︸
number of matches

Ψi(ui)︸ ︷︷ ︸
probability of selling

Si(uL, uH)− ui︸ ︷︷ ︸
profits-per-sale

∣∣∣e] (4.11)

where I also average over the probabilities that they observe each signal j ∈ {l, h} in matches with a

buyer of each valuation θi ∈ {θL, θH}, and that they mix over menus as per F e,j upon each signal.

Lastly, in the case of efficiency, high-valuation buyers always receive efficient offers, but the low may

get rationed, so I measure the efficiency of trade by the average quality offered to the latter,

ρE[qL|θL] + (1− ρ)E[max(qL, q
′
L)|θL] (4.12)

where I rely on the equilibrium property that generosity and efficiency are positively correlated, so

buyers always select the most efficient offer.

The qualitative effects of competition and precision on efficiency and buyer surplus are directionally

similar in similar environments, but we look elsewhere to track efficiency. Whereas pricing uniquely

impacts trade efficiency at the extensive margin - determining whether a buyer trades or not by finding

any acceptable prices - when quality is exogenous, removing this barrier allows information to shape the

level of trade at the intensive margin - determining the quality of trade a buyer obtains. Stronger still,

the optimality of screening menus allows almost every buyer to trade some amount, so that all action

is at the intensive margin - a theoretical insight that informs empirical analysis. Seller heterogeneity

introduces more significant differences. For one, it allows me to cleanly analyze precision’s profit

externalities and find that precision growth at the frontier (shark precision) is broadly beneficial for

all sellers, even laggards, whereas precision growth among laggards generally only benefits them and

hurts more leaders. Second, it gives rise to the ordering of interim types (4.9) that orders offers and

which, in turn, implies that in sufficiently competitive economies, amateurs do not use their predictive

skill, since their offers on either signal are dually efficient and equally distributed. In other words,

competition neutralizes the predictive skill of amateurs, when quality is endogenous.

4.4.1 Competition

The aggregate effects of competition are similar when information also orients production - increasing

trade efficiency, buyer surplus, and decreasing seller surplus - but the mechanism responsible for

them differs. In particular, competition increases the sales gains from generosity, so sellers offer more

generous menus, and complementarity between the utility offered to each type of buyer then links

both their joint progression and the quality that is offered to low-valuation buyers.
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(a) Buyer Surplus and Efficiency (b) Seller Surplus

Figure 5: Buyer Surplus and Efficiency Effects of Competition The common parameters
are [θL, θH ,P(θL)] = [1, 3, 0.8] for buyers, [κL, κm, q

∗
L, q
∗
H ] = [0.5, 2, 1, 2] for sellers’ cost functions,

[αa, αs] = [0.55, 0.95] for sellers’ precision, and P(a) = 0.5 for proportion of amateurs.

4.4.2 Precision

The qualitative effects of precision on the efficiency of trade and buyer surplus are similar as well, with

valuation heterogeneity largely determining precision’s effects: in economies where buyers’ preferences

are similar, precision can decrease trade efficiency and hurt all buyers, whereas in economies where

buyers’ preferences are dissimilar, precision increases trade efficiency and low-valuation buyer surplus,

but generally19 hurts high-valuation buyers. I illustrate these points in Figure 6 by tracking the

response of buyer surplus and trade efficiency to changes in shark precision.

(a) Similar Valuations: [θL, θH ] = [1, 2.5] (b) Dissimilar Valuations: [θL, θH ] = [1, 10]

Figure 6: Buyer Surplus and Efficiency Effects of Precision Half of the sellers are sharks and
I increase their precision. The common parameters are P(θL) = 0.8 for the mass of low-valuation
buyers, [κL, κm, q

∗
L, q
∗
H ] = [0.5, 2, 1, 2] for sellers’ cost functions, αa = 0.55 for amateur precision, and

ρ = 0.6 for the level of competition.

When it comes to sellers, the monotonicity of offers with seller type is fundamental. Inefficient

offers from amateurs only beat those of sharks who observe high signals and the profitability of dually

efficient offers is only determined by the generosity of inefficient offers below, so shark precision sets off

19There are still cases where additional precision benefits high-valuation buyers, by encouraging generosity upon a
low signal (low signal type effect).
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a chain of downward generosity revisions that benefit both them and amateurs: the inefficient offers

of high signal sharks become less competitive (generous) when their information is more precise (lower

ps,hL type under a larger αs), which makes any of the following inefficient offers of amateurs above less

competitive/generous, which makes any of the following inefficient offers of low signal sharks above

less competitive/generous, ultimately also making any of the following dually efficient offers above less

competitive/generous.

(a)
Amateur Precision Change,

Shark Precision αs = 0.95
(b)

Shark Precision Change,

Amateur Precision αa = 0.55

Figure 7: Seller Surplus Effects of Precision The common parameters are [θL, θH ,P(θL)] =
[1, 10, 0.8] for buyers, [κL, κm, q

∗
L, q
∗
H ,P(a)] = [0.5, 2, 1, 2, 0.5] for sellers, and ρ = 0.6 for the level of

competition.

On the other hand, sharks generally suffer from amateur expertise. Sharks who observe a high sig-

nal always lose against amateurs, so their profitability is invariant to amateur precision, but sharks who

observe a low signal always beat amateurs, so they are exposed to the effect of precision on amateurs

who observe high and who low signals. High signal amateurs’ offers become less competitive/generous

under greater precision, particularly affecting their utility offers to high-valuation buyers, and this

chains up the distribution, so sharks’ sales to high-valuation buyers generally become more profitable.

However, low signal amateurs become willing to bid more aggressively for any amount of low-valuation

buyer trade, so they strongly increase the utility offered to these buyers and decrease the profitability

of sharks’ sales to them. It is the latter effect that generally dominates; the exceptions, where all

sellers benefit from amateur precision at the margin, take place in settings where buyers have very

similar preferences and amateur precision is relatively low. I illustrate the general profitability trends

in Figure 7 and the more exceptional one in Figure 8.
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Figure 8: All Sellers Benefit from Amateur Precision The parameters are [θL, θH ,P(θL)] =
[1, 2.1, 0.8] for buyers, [κL, κm, q

∗
L, q
∗
H ,P(a), αs] = [0.5, 2, 1, 2, 0.5, 0.95] for sellers, and ρ = 0.5 for the

level of competition.

5 Conclusion

A prediction race has started, where firms’ performance is intrinsically linked to their ability to source

and utilize data, and an emerging literature (Brynjolfsson, Rock and Syverson (2019), Cockburn et al.

(2019), Trajtenberg (2019), Goldfarb (2019)) argues that many of the technologies leveraged in this

race are indeed general-purpose technologies (GPT) i.e. “widely used, capable of ongoing technical

improvement, and enabling innovation in application sectors” (Bresnahan et al. (1995), Bresnahan

(2010)). Since the consequences of this shift are likely to be deep, pervasive, and persistent, research

in this area is fundamental and urgent.

Motivated by the size of the retail sector and its intense reliance on data for product and pricing

decisions, I answer a “crucial” question posed by Bergemann and Bonatti (2019) in their review

of markets for information: “what are the implications of acquiring an advantage in a downstream

market by means of better data (e.g. improvements in the predictive power of an algorithm)?” The

problem is addressed in a model that features sellers with predictive skill that has strategic value,

as they face adverse selection from buyers and imperfect competition from peers. Aligning with

empirical documentation of broad endemic differences in firms’ use of predictive technologies, as well

as forward-looking policy concerns about these disparities, I allow the precision of firms’ information

to be heterogeneous. I find that precision is generically efficient but redistributive. On the demand

side, it tends to benefit (hurt) low- (high-) valuation buyers. On the supply side, unsurprisingly,

precision allows firms to obtain greater profits, but, more interestingly, it can even benefit competitors.

This highlights the importance of nuanced analysis, standing in contrast to the popular narrative of

consumer harm and anti-competitive effects.

Several modeling compromises leave open avenues for future research. For one, predictive skill is

exogenous in the model despite indications that very interesting forces shape its initial acquisition.

Second, once an initial level of predictive skill has been acquired, this reduced-form model of precision

cannot speak to the important feedback loop between data and the strategic aspects that it endows

sellers with. These choices constrain the model to be static in its most natural interpretation and

inhibit the study of essential dynamics, such as learning within and across each side of the market, the
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evolution of market structure, and trends of prices as well as production. A formal characterization of

these would be very helpful for understanding the factors that drive documented heterogeneity, in the

short and (possibly) long run. Lastly, the naivete of buyers with respect to sellers’ information could

also benefit from relaxation, given its importance to outcomes in the model, as well as its role in a

host of results emerging from the literature on consumer privacy. Like these agents, I use a model to

understand a complicated problem; however, structural concerns have led me to sacrifice additional

complexity for the sake of intelligibility. My hope is that this work contributes to an ongoing discussion

that advances the precision of our understanding.
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Appendix A Exogenous Quality Setting: Equilibrium Struc-

ture

I will give some additional comments on the properties of the distributions of offers, {F (x|θ}θ∈{θL,θH},
which complement the exposition in the main text. Then, I will derive sellers’ strategies in an equi-

librium where offers are ordered according by the following principle: the highest prices are offered

by high signal sellers, below which are any prices offered by both types of sellers (when high signal

sellers must offer some pooling prices), and below which there is a region of prices offered only by low

signal sellers.

A.1 Distribution of Offers

By (3.4), equilibrium distributions of offers in a low or high-valuation match - F (x|θL) and F (x|θH),

respectively - are averages of each type of seller’s strategy, weighted by the mass of sellers with the

respective type in matches with buyers of the respective valuation. Since buyers of either valuation

have a strictly positive probability of matching with any type of seller, these distributions share

identical supports - their differences lie in how mass is allocated within these.

Further, so long as some buyers obtain one offer but others obtain two, the equilibrium distributions

- both aggregate price distributions and, by extension, seller strategies - are atomless. Sellers always

have a strictly positive probability of competing against a peer of identical type, so a price greater

than its unit cost (0) cannot be an atom, because deviating with an infinitesimal discounts would

sacrifice negligible profits per sale in exchange for a discrete increase in sales. Additionally, any price

offer equal to the unit cost is strictly dominated by some more expensive one because the latter would

generate some profits in each sale and at least generate sales in monopoly matches, ruling out an atom

at the unit cost and implying that equilibrium price distributions are continuous.

Since a loss of sales is the only deterrent to a price increase, and sales are only lost by becoming

more expensive than another seller’s offer or a buyer’s valuation, offer distributions must be locally

increasing at any price in their support that is not equal to some buyer’s valuation.

Proposition A.1 (Strictly Increasing Distributions). Given prices x, x′ ∈ supp(F (x|θ)) such that

x < x′ < θL or θL < x < x′ < θH , F (x|θ) increases strictly in the interval [x, x′] for θ ∈ {θL, θH}.

An immediate implication is that the prices offered to any buyer are distributed in at most two

disjoint intervals: one formed by prices weakly below the low-valuation, x ≤ θL, and another formed

by prices strictly above it, θL < x. As such, I only need to find the endpoints of these intervals to

fully characterize the support of prices.

I start with the suprema of low-trade-permitting and overall prices. Equilibrium price distributions

are atomless, so sellers who offer the highest overall price only expect to obtain sales with it in

monopoly matches and bid accordingly, as per Equation (3.5). Comparing the choices of the two

types of sellers, the one most willing to offer a high price is the type who expects the greatest sales

from it: sellers who observe a high signal. The highest equilibrium price is that chosen by a monopolist

who observes a high signal. Continuing with the most expensive offer that allows trade with both

types of buyers, a seller who offers the highest low-trade-permitting price only expects to sell to a

low-valuation buyer without better offers from competitors, so it chooses the highest price that these

buyers would accept, mainly x = θL.

The equation that determines the unique aggregate distribution of prices x > θL is that of profit

equality in high-valuation matches. If any such prices are offered, I have argued that θH is the highest
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one, which only allows sellers to trade in monopoly matches, so other offers that only allow trade with

high-valuation buyers should be as profitable as this one,

ρθH = (ρ+ (1− ρ)(1− F (x|θH)))x (A.1)

where I implicitly apply the convexity of the separating support. An offer of θH maximizes (minimizes)

high- (low-) valuation match profitability,

Π(x = θH |θ = θL) = 0

Π(x = θH |θ = θH) = θH

and, separating prices preserve these conditional profits, so they are offered by sellers who place

sufficient posteriro weight on high-valuation matches.

Switching to sellers who offer pooling prices. Consider the type of sellers who offer the highest

equilibrium pooling price x = θL. If high signal sellers only offer separating prices, then it is without

loss to assume that prices are strictly ordered by the seller’s type: (a) the distribution of separating

prices is unique Proposition 3.5, so total welfare and its distribution are invariant in shifts of mass

among seller strategies that preserve it, and (b) only low signal sellers offer pooling prices. However,

when high signal sellers offer pooling prices, low signal sellers’ support must overlap with these. To

understand why, consider the highest pooling price offered by low signal sellers, xl, and suppose that

it was strictly below θL. There are more high signal sellers in high-valuation matches than in low-

valuation matches, so if they were the only ones who bid in [xl, θl], then an offer of xl would entail an

identical drop in profits from monopoly matches with any buyer, but a strictly larger profit increase

in competitive matches where the buyer’s valuation was high,

Π(θL|θL)−Π(xl|θL) = − (ρ+ (1− ρ)(1− α)(1− Fh(θl))(θL − xl)

+ (1− ρ)(1− α)(Fh(θL)θL − Fh(θL)xl)

< Π(θL|θH)−Π(xl|θH) =− (ρ+ (1− ρ)α(1− Fh(θl))(θL − xl)

+ (1− ρ)α(Fh(θL)θL − Fh(θL)xl) (A.2)

Indifference of high signal sellers, which requires xl to be less profitable in some type of match, could

only be maintained then if xl was less profitable in low-valuation matches; meaning that low signal

sellers would strictly prefer to bid above xl - a contradiction. Extending this reasoning, I rule out any

interval of pooling prices that are exclusively offered by high signal sellers. Inversely, since there are

more low signal sellers in low-valuation matches, high signal sellers cannot make offers below intervals

of pooling offers exclusively offered by low signal buyers20.

Proposition A.2 (Support Overlap). If only low signal sellers offer pooling prices, it is without loss

to consider the unique ordered equilibrium where strategies have disjoint support supp(F l) < supp(Fh).

Whereas, if high signal sellers offer pooling prices, then their lowest pooling price offer xh is such that

supp(F l) ∩ supp(Fh) ∩ [0, θL] = [xh, θL].

The only way two sellers with different weights on low- and high-valuation match profitability can be

indifferent over the same set of pooling prices, however, is if these maintain profits conditionally on

20Same monopoly match revenue loss, strictly higher compensating profit gain in competitive matches with low-
valuation buyers, so the price at the top of the interval would be more profitable in high-valuation matches (and less in
low-valuation matches), and be strictly preferred by high signal sellers than the bottom one.
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the buyer’s valuation,

Π(θL|θ) = Π(x|θ) ∀x ∈ [xh, θL] and θ ∈ {θL, θH} (A.3)

Note that since the aggregate distributions of separating prices F (x|θ) for x > θL are unique, this pair

of equations also uniquely pins down the aggregate distributions of prices in the overlapping support,

as Π(x|θ) = (ρ+ (1− ρ)(1− F (x|θ)))x.

Low and high signal sellers expect different profits from an offer of θL, however, so the support of

low signal sellers’ strategy must extend below that of high signal sellers’ when the supports of their

strategies overlap in the pooling region,

Π(xh; phL) = Π(θL; phL) > Π(xh; phL) = Π(θL; plL)

Proposition A.3 (Lowest Pooling Offers). If some separating and pooling offers are made in equi-

librium, the lowest are made by low signal sellers supp(F l) ∩ supp(Fh)c ∩ [0, θL] = [xl, xh].

The fact that the aggregate distribution of offers F (x|θ) is uniquely determined over separating

and overlapping pooling prices, then also implies that these are uniquely determined over pooling

prices that only low signal sellers offer,

(ρ+ (1− ρ)(1− F (xh|θ)))xh = (ρ+ (1− ρ)(1− F (x|θ)))x x ∈ [xl, xh] and θ ∈ {θL, θH} (A.4)

A.2 Seller Strategies

Starting with the strategy of seller types that offer the (weakly) highest prices (sellers who observe

high signals), the supremum of their distribution’s support is as specified by Proposition 3.3. If their

highest price is θL, I focus on the type-invariant equilibrium where all sellers have the same mixture.

When every type of seller has the same strategy, however, the distribution of competitor offers in both

low and high-valuation matches is precisely equal to it, so a single equation pins down this distribution

F (x) at every price offer; mainly, that which guarantees that every offer yields the same profits as the

highest one,

ρθ = (ρ+ (1− ρ)(1− F (x)))x (A.5)

Proposition A.4 (All Pooling Type-Invariant Equilibrium). If the highest equilibrium offer is pooling,

the distribution of offers in low- and high-valuation matches is,

F (x) = 1− ρ

1− ρ
(θ − x) (A.6)

and it is also the strategy of both seller types.

However, when the highest equilibrium price is separating, I construct an equilibrium by allocating

mass from the top down prioritizing sellers of the lowest type .ie first adding mass to the strategy of

high signal sellers and only adding mass to the strategy of low signal sellers if needed.

Disjoint Support Equilibrium - I will first derive strategies for the case where high signal sellers

do not pool, so the support of their strategy with that of low signal sellers is disjoint. Since seller

strategies can then be ordered strictly, I derive them sequentially, starting with that of sellers who
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observe high signals. The lower bound on high signal sellers’ offers is,

ρθH = (ρ+ (1− ρ)α)xh =⇒ xh =
ρ

ρ+ (1− ρ)α
θH (A.7)

where α is the mass of high signal sellers that a seller expects to face in competitive matches if the

buyer is of high-valuation - it would always lose against sellers who observe low signals, since they

offer lower pooling prices in these settings. The allocation of mass between the upper and lower bound

is then uniquely determined by (A.1) and the aggregation condition F (x|θH) = αFh(x),

Fh(x) =


1 ∀ x ∈ (θH ,∞)

1− ρ
(1−ρ)α

θH−x
x ∀ x ∈ [xh, θH ]

0 ∀ x ∈ (−∞, xh)

(A.8)

By induction, when low signal sellers offer any separating prices, their strategy is,

F l(x) =



1 ∀ x ∈ (xh,∞)

1− P(sale at price xh|θH)
(1−ρ)(1−α)

xh−x
x ∀ x ∈ [x̂, xh]

1− P(sale at price θL;plL)

(1−ρ)P(plL|l)
θL−x
x ∀ x ∈ [xl, θL]

0 ∀ x ∈ (−∞, xl)

(A.9)

P(sale at price xh|θH) = ρ+ (1− ρ)α (A.10)

P(sale at price θL; plL) = ρ+ (1− ρ)((1− F (x̂|θH))plH + (1− F (x̂|θL))plL) (A.11)

where x̂ is the lowest separating price offered by low signal sellers.

Whereas if low signal sellers only offer pooling prices, the equation for their strategy is instead,

F l(x) =


1 ∀ x ∈ (θL,∞)

1− P(sale at price θL;plL)

(1−ρ)P(plL|l)
θL−x
x ∀ x ∈ [xl, θL]

0 ∀ x ∈ (−∞, xl)

(A.12)

where the lowest price offered by a low signal seller is the lowest one in equilibrium, so it beats every

other price, yields profits xl, and must be as profitable as the highest price offered by this seller,

xl = P(sale at price xh; plL)xh

Overlapping Support Equilibrium - In settings where some high signal seller offers are pooling,

their strategy over pooling prices and the lowest separating price that they offer, x̂, is given by the

formulas that I’ve already derived, but in the overlapping pooling region [xh, θL] high and low signal

sellers’ strategies at each price are pinned down by condition that profits conditionally matching with

a buyer of either valuation are preserved Π(θL|θ) = Π(x|θ) for θ ∈ {θL, θH},

|θH condition: (ρ+ (1− ρ)α)θL = (ρ+ (1− ρ)(α(1− Fh(x)) + (1− α)(1− F l(x)))x

|θL condition: (ρ+ (1− ρ)(1− α))θL = (ρ+ (1− ρ)((1− α)(1− Fh(x)) + α(1− F l(x)))x (A.13)

and then the strategy of low signal sellers over the pooling prices that only they offer (below the
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overlapping region) follows by the same formula from the disjoint support equilibrium for their pooling

offers.

Appendix B Endogenous Quality Setting: Equilibrium Prop-

erties

In this section, I will discuss the technical aspects of the candidate equilibrium introduced in Sec-

tion 4.3.2 and explain why many of its distinguishing properties hold in all equilibria. An even

stronger result will follow that the ordered symmetric equilibrium is unique, which allows me to affirm

the genericity of the comparative static analysis in Section 4.4.

B.1 Equilibrium Distributions and Orderedness

I begin by recalling the concept of an ordered equilibrium, which connects the level of indirect utility

offered to low and high-valuation buyers in a menu. Put simply, in an ordered equilibrium, sellers

who offer more indirect utility in the contract intended for a high-valuation buyer must do the same

in the contract intended for a low-valuation one.

Definition B.1 (Orderedness). An equilibrium is said to be weakly-ordered if, for any two equilibrium

menus (uL, uH) and (u′L, u
′
H),

(uH − u′H)(uL − u′L) ≥ 0

When the inequality holds strictly in almost every21 comparison, I refer to the equilibrium as ordered.

These two properties have also been referred to as rank preserving and strictly rank preserving

in related work (including Lester et al. (2019)). Like them, I find that orderedness is necessary

holds whenever a buyer’s incentive compatibility constraint binds at one of the menus that is being

compared.

Lemma B.1 (Ordered Equilibrium). Almost every equilibrium menu (uL, uH) featuring a binding

incentive compatibility constraint is ordered when compared to another equilibrium menu (uL
′, uH

′).

That is,

(uH − uH ′)(uL − uL′) > 0

The economic rationale underlying this complementarity in indirect utilities is familiar from Garrett

et al. (2019) and intuitively explained in Section 4.3.2. Consider a seller who increases the indirect

utility it offers to high-valuation buyers uH . If their incentive constraint binds, this relaxes it and

allows for an increase in the quality provided to buyers of low-valuation in the paired contract (qL, xL),

as per qL = uH−uL
∆θ . The seller can then offer low-valuation buyers the same utility uL, while obtaining

strictly larger profits in each sale to them; however, when low sales are more profitable, the seller also

bids more aggressively for them, and this is done by making them more appealing through a low

utility increase (↑ uL). The channel that creates this complementarity is, therefore, the connection

between the efficiency of the contracts and the utility they offer to both buyers. Since this link is

missing among dually efficient offers, at which incentive compatibility constraints are slack, they do

not need to be ordered.

Orderedness simplifies the equilibrium structure substantially, and heterogeneity in sellers’ interim

beliefs does not alter the fundamental complementarity between providing additional utility to low

21Up to a measure zero set of menus.
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and high-valuation buyers, but rather how interested sellers are in forfeiting high sale profitability for

low one. Therefore, the heterogeneity of the posteriors moderates the joint progression of uL and uH ,

but does not change the correlation between these.

Theorem B.1 (Type Monotonicity). Let (uL, uH) and (u′L, u
′
H) be two equilibrium menus sharing a

common binding incentive compatibility constraint with ui < ui
′. Then,

1. High sale profits per-match are decreasing in generosity, ΠH(uL, uH) > ΠH(u′L, u
′
H), while low

ones increase, (uL, uH) < ΠL(u′L, u
j
H
′).

2. If the menus are offered by sellers of respective types pL 6= p′L, then pL < p′L

Consider the menu (uL(p), uH(p)) occupying the pth generosity-percentile in the equilibrium distri-

bution. Then, uH(p) increases enough for profits from high sales ΨH(p)(S∗H −uH(p)) to decrease, but

uL(p) grows passively enough to not undo the additional profitability of profits from low sales. The

relationship between low/high trade profits per-match and generosity creates an equilibrium structure

where seller types comparatively more interested in profits from high sales make offers that are less

generous towards buyers with either valuation than those made by seller types comparatively more

interested in profits from low sales. In particular, sellers relatively more convinced that they face

high-valuation buyers will aim to depress bids as much as possible so as to extract these buyers’

(information) rents, whereas sellers who are relatively more convinced that they face low-valuation

buyers give greater consideration to capturing profitable trade with them and cede additional rents

to both low and high-valuation buyers to do so.

Efficiency gains thus far have been described as taking place within low trade, implicitly treating

the incentive constraint of high-valuation buyers as the only relevant one. In fact, this is a necessary

property of equilibria in any economy where sellers’ costs satisfy Assumption 4.2. Furthermore, in

these, offers are grouped in two sets of menus. The most rationed menus, at which high-valuation

buyers’ incentive constraints binds, are also the least generous, and then any that are dually efficient

are also more generous towards low and high-valuation buyers.

Lemma B.2 (Stacking). The menus offered in an equilibrium where firms’ costs satisfy Assump-

tion 4.2 are partitioned into separate incentive compatibility regions such that

1. low-valuation buyers’ incentive constraint does not bind in at any menu.

2. If some dually efficient menus are offered, there exists a udei such that all utilities ui < udei are

offered in menus at which high-valuation buyers’ incentive constraint binds, whereas all utilities

ui ≥ udei are offered in dually efficient menus.

Consider the logic that drives this, from the least generous bid to the most generous. The least

generous menu is offered by a seller who only expects to sell if it is in a lone match, so it offers exactly

the menu it’d choose if it was a monopolist with the same assessment of the buyer’s probable valuation,

and a monopolist would never offer a menu at which low-valuation buyers’ incentive constraint binds

- featuring uH − uL > q∗H∆θ - since they could strictly increase profits from high sales by offering

fewer rents to high-valuation buyers. Competition seller types who make more generous offers drives

the efficiency of these alongside their generosity (through uH − uL growth). When there is sufficient

upward pressure on generosity/efficiency, such that the utility gap reaches uH − uL = q∗L∆θ, menus

become dual efficient. Without an efficiency benefit to high rent concession (↑ uH) or efficiency loss

to low rent extraction (↓ uL) among dually efficient offers, the growth of uH − uL slows so that

low-valuation buyers’ incentive constraint never binds.
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The results I have covered so far do not rely on the differentiability in any way, but it is a

convenient feature to convey intuition and maintain tractability. It is even better to be able to work

with continuously differentiable conditional distributions Fi(ui|θi) over the utilities offered by the

average seller to each type of buyer. Fortunately, equilibria also have these properties.

Lemma B.3 (Equilibrium Distributions). Equilibrium distributions Fi(ui|θi) for i ∈ {l, h}.

1. Do not have atoms in their supports Υi.

2. Have a convex, connected low support ΥL = [uL, uL]. The high support ΥH is the union of at

most two convex sets disjoint sets, composed of the high utilities offered in menus where high-

valuation buyers’ incentive constraint bids and is slack, respectively. Furthermore, suprema over

utilities always satisfy ui ≤ S∗i .

3. Are continuously differentiable on the interior of their supports with one-sided derivatives at the

boundaries.

Atoms make it possible for sellers to obtain discrete increases in sales in exchange for infinitesimal

discounts in profits per sale, so it is clear that these cannot exist. Given that low-valuation buyers’

incentive constraint does not bind in equilibrium, gaps in the low support would allow the sellers

offering a menu with implied utility at the top of the gap to increase their profitability in low-valuation

matches by decreasing the rents that the menu offers to low-valuation buyers, which would achieve

identical low sales but strictly higher profits in each one. The logic for the convexity claim among

high offers depends on whether the point uH is such that menus that offer it are dually efficient or

constrained. In the former case, high-valuation buyers’ incentive constraint is slack, so a gap below any

such utility would allow a seller that offers it to become more profitable by lowering these high rents,

which would preserve high sales, increase high profits per sale, and not affect the efficinecy/profitability

of its low-valuation buyer sales. In the latter case, a constrained menu is ordered when compared with

any other, so a gap on the high side is either accompanied by one on the low side (which I have

ruled out), an atom at its low utility offer (which I have ruled out), or a situation there are two

constrained menus (with the same low utility term, but one has the high utility term at the top of

the gap and the other the one at the bottom) and low sales vary locally in low generosity in such a

way that it is not preferrable to alter the low offer whether the menu is more or less profitable in each

low sale, which is not possible. Lastly, the differentiability claims follow because sellers’ indifference

must be maintained by the probability of winning in combination with profits per sale, and additively

separable utilities allowed me to rewrite profits per sale as Si(uL, uH)−ui, which is smooth in marginal

changes to either utility, so differentiability of equilibrium distributions becomes necessary to rule out

infinitesimal deviations.

B.2 Equilibrium System of Equations Derivation

I now briefly derive the system of equations that allow me to obtain the candidate equilibrium’s

analytical closed form. Recall that the problem of a type pe,jL seller is to offer a menu (uL, uH) that

maximizes her expected profits,

Πe,j(uL, uH) =
∑
i=l,h

pe,ji Ψi(ui)(Si(uL, uH)− ui)

subject to the constraint uH ≥ uL ≥ 0. The first-order conditions of this problem highlight the

interdependence between the optimal amount of utility extended to each type of buyer, as well as the
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role of posteriors in determining the relative importance of various trade-offs. Based on the fact that

only high-valuation buyers’ incentive constraint can bind in the candidate equilibrium, the seller’s

optimality conditions are

∂

∂uL
: pe,jL (1− ρ)fL(uL|θL)(SL(uL, uH)− uL)︸ ︷︷ ︸

sales gains

− pe,jL ΨL(uL)︸ ︷︷ ︸
rent losses

+ pe,jL ΨL(uL)
∂SL
∂uL

(uL, uH)︸ ︷︷ ︸
efficiency losses

= 0 (B.1)

∂

∂uH
: pe,jH (1− ρ)fH(uh|θH )(S∗H − uH)︸ ︷︷ ︸

sales gains

− pe,jH ΨH(uH)︸ ︷︷ ︸
rent losses

+ pe,jL ΨL(uL)
∂SL
∂uH

(uL, uH)︸ ︷︷ ︸
efficiency gains

= 0 (B.2)

Similar terms appear in both equations. The first two capture a typical trade-off between expected

sales versus rents per-sale. By increasing indirect utility ui, a seller makes her offer more attractive to

θi valuation buyers, thus increasing the probability of selling to them by the mass of equilibrium menus

that it would be preferred over in contested matches, mainly pe,ji (1− ρ)fi(ui|θi), whereas the cost of

surrendering said rents is directly proportional to the likelihood of trading pe,ji Ψi(ui) with buyers of

this valuation. The third term determines the efficiency effect of an increase in generosity towards θi

valuation buyers (ui), and it stems from the point that univariate changes in generosity ui alter the

difference in offered utilities uH − uL, which drives efficiency. When high-valuation buyers’ incentive

constraint binds at a menu, generosity towards low-valuation buyers (uL increases) requires further

rationing (qL decrease), thereby reducing the gains of trade with them SL(uL, uH) and, by extension,

the profitability of their purchases; the opposite holding for generosity towards high-valuation buyers.

In other words, generosity in the low (high) offer has an efficiency cost (benefit), when high-valuation

buyers’ incentive constraint is locally binding. Whereas if low-valuation buyer’s incentive constraint

is slack, the efficiency term disappears and the only consideration for the seller is the aforementioned

trade-off between the from sales and rents given to buyers of the same valuation.

The implicit objects of immediate interest are the marginal conditional utility distributions Fi(ui|θi),
which shape the nature of competition. Marginals have densities that measure the mass at points on

the supports of some seller types’ mixed strategy. These supports are atomless, convex, and mono-

tone in the seller’s type (overlapping only among any dually efficient bids). Locally, each conditional

marginal density fi(ui|θi), therefore, corresponds to a weighted density of each seller type’s conditional

marginal density. In particular, if the utility is offer in an inefficient menu, then these is a unique

seller type pe,j; that offers it and the conditional marginal density is given by,

fi(ui|θi) = µ(e)P e(j|θi)fe,ji (ui|θi)

For utilities that are offered in dually efficient menus, the conditional marginal density still takes a

weighted average form but there is a much simpler way to solve for the utility offers, so I will not use

that relation.

To obtain the distribution over utilities in inefficient menus, I will further rewrite the first-order

conditions of sellers offering these by applying additional equilibrium properties. In particular, recall

that menus are ordered, so the particular ones of seller types pe,jL who make inefficient offers are as

well, and can be written as functions (uL(Q), uH(Q)) of the menu’s generosity quantile Q in seller type

pe,jL ’s mixed strategy. This allows me to apply the inverse function theorem and link the conditional

marginal densities fi(ui|θi) to the progression of utilities,

fi(ui|θi) =
µ(e)P e(j|θi)
u̇e,ji (Q)

(B.3)
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so the conditional marginal distributions take the form,

Fi(ui|θi) = µ(e)P e(j|θi)ue,j,(−1)
i (ui) +

∑
e′,j′

s.t. pe
′,j′ < pe,j

µ(e′)P e
′
(j′|θi) (B.4)

where u
e,j,(−1)
i (·) is understood to be the inverse of the strictly monotone functions ue,ji (Q). And, the

Qth quantile menu from a pe,jL type obtains average sales per match,

Ψe,j
i (Q) = ρ+ (1− ρ)Fi(u

e,j
i (0)|θi) + (1− ρ)µ(e)P e(j|h)Q

in matches with θi valuation buyers.

Substituting (B.3) and (B.4) into the first-order conditions produces a standard system of ordinary

differential equations that pins down the indirect utilities offered in constrained equilibrium menus.

Piecewise linear costs make marginal efficiency effects locally constant, which decouples these equa-

tions and allows me to obtain analytical solutions: the equation that drives high utility ue,jH (Q) is

independent, under piecewise linear costs, and I can then substitute its solution into the equation

driving the progression of low utility ue,jL (Q). Specifically, note the marginal efficiency term becomes,

∂SL
∂uH

(uL, uH) = (θL − κL)
∂qL
∂uH

=
θL − κL

∆θ

So, the differential system governing the progression of utilities in inefficient menus offered by a type

pe,jL seller is,

u̇e,jL (Q)

[
−θL − κL

∆θ
− 1

]
Ψe,j
L (Q) + (1− ρ)µ(e)P e(j|l)(SL(ue,jL (Q), ue,jH (Q))− ue,jL (Q)) = 0 (B.5)

u̇e,jH (Q)

[
pe,jL
pe,jH

θL − κL
∆θ

Ψe,j
L (Q)−Ψe,j

H (Q)

]
+ (1− ρ)µ(e)P e(j|h)(S∗H − u

e,j
H (Q)) = 0 (B.6)

If offers become dually efficient, either among the offer seller type or because this seller type prefers to

jump right to making dually efficient offers when it transitions from those of the adjacent seller type

below, I will solve for the remaining utility offers with a different equation. As for the exact form of

the utilities that solve the system (B.5)-(B.6), I define Ξe,j =
pe,jH P(j|h)

pe,jH P(j|h)−pe,jL P(j|l) θL−κL∆θ

to tighten the

expressions and write the high utility term as,

ue,j
H (Q) = S∗H − Ce,j

H

(
pe,jH Ψe,j

H (Q)− pe,jL Ψe,j
L (Q)

θL − κL

∆θ

)−Ξe,j

(B.7)

with,

Ce,jH =
S∗H − u

e,j
H (0)(

pe,jH Ψe,j
H (0)− pe,jL Ψe,j

L (0) θL−κL∆θ

)−Ξe,j
(B.8)

which simplifies to,

ue,jH (Q) = S∗H − (S∗H − u
e,j
H (0))

(
pe,jH Ψe,j

H (0)− pe,jL Ψe,j
L (0) θL−κL∆θ

pe,jH Ψe,j
H (Q)− pe,jL Ψe,j

L (Q) θL−κL∆θ

)Ξe,j

(B.9)

Substituting this explicit form of high utility into the differential equation for low utility, I then obtain
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its functional form,

ue,jL (Q) =
Ψe,j

L (0)

Ψe,j
L (Q)

(
Ce,j

L +
(1− ρ)µ(e)P e(j|l)

Ψe,j
L (0)

θL − κL
θH − κL

(
Ce,j

H

−pe,jH P e(j|h)
(B.10)

∗
((

pe,jH Ψe,j
H (Q)− pe,jL Ψe,j

L (Q)
θL − κL

∆θ

)1−Ξe,j

−
(
pe,jH Ψe,j

H (0)− pe,jL Ψe,j
L (0)

θL − κL
∆θ

)1−Ξe,j
)))

(B.11)

with Ce,jL = ue,jL (0). This heavy expression is not very informative, but I can derive an implicit form

of the low utility term - as a function of both its generosity quantile Q and the high utility it is paired

with ue,jH (·) - that is quite helpful. To do this, I simplify (B.6) and rewrite it as,

Ψe,j
L (Q)u̇e,jL (Q) + ψe,jL (Q)ue,jL (Q) = ψe,jL (Q)

θL − κL
θH − κL

ue,jH (Q)

=⇒ d

dQ

(
Ψe,j
L (Q)ue,jL (Q)

)
= ψe,jL (Q)

θL − κL
θH − κL

ue,jH (Q)

so that,

ue,jL (Q) = ue,jL (0)
Ψe,j
L (0)

Ψe,j
L (Q)

+
θL − κL
θH − κL

Q∫
0

ψe,jL (x)

Ψe,j
L (Q)

ue,jH (x) dx (B.12)

This expression highlights the fact that the low offer is a conditional expectation of the high offers

made in less generous menus. This characterization provides an immediate proof for the point that

the difference in utilities, ue,jH (Q)− ue,jL (Q), and hence efficiency, increases with respect to generosity,

and allows me to more easily think about the response of buyer welfare to parameter perturbations,

by focusing on the response of high-valuation buyer surplus and then averaging these to get that of

low-valuation buyers.

The initial condition of adjacent types pe,jL < pe
′,j′

L depends on whether (a) high-valuation buyers’

incentive constraint binds at most generous menu (ue,jL (1), ue,jH (1)) of the lower type pe,jL and (b) when

that happens, whether the next type of seller would prefer for their least generous bid to also inefficient

or dually efficient. This decision is determined by the efficiency gain from additional high rents on

the profitability of the least generous low offer,

− pe
′,j′

H Ψe′,j′

H (0) + pe
′,j′

L Ψe′,j′

L (0)(θL − κL)
∂qL
∂uH

= −pe
′,j′

H Ψe′,j′

H (0) + pe
′,j′

L Ψe′,j′

L (0)
θL − κL

∆θ

When this is > 0, sellers of the higher type pe
′,j′

L prefer for their lowest bid to be dually efficient, and

there is a discontinuous jump in generosity between ue,jH (1) < ue
′,j′

H (0). When the condition is < 0,

instead, sellers of the higher type prefer for their least generous offers to also be inefficient, and there

is no discountinuity between ue,jH (1) < ue
′,j′

H (0). In either case, the progression of the low utility terms

is continuous and the higher seller type’s least generous low utility offer is exactly the most generous

one of the lower seller type, ue,jL (1) = ue
′,j′

L (0).

I will prove that the difference in utilities ue,jH (Q) − ue,jL (Q) increases in the seller’s quantile and

hence the efficiency of the offer, so if these reach the point ue,jH (Q) − ue,jL (Q) = q∗L∆θ such that the

menu becomes dually efficient, then I solve for the dually efficient menus with a simpler equation. In

particular, given the utility pair (udeL (0), udeH (0)) at which menus become dually efficient and the mass

of sellers that makes constrained offers in θi matches Fi(u
de
i ), then the equations that low and high

offers must satisfy for dually efficient bids to have the necessary property of being equally profitable
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in low (high) matches is,

(ρ+(1−ρ)Fi(u
de
i (0)|θi))(S∗i −ude

i (0))) = (ρ+(1−ρ)(1−Fi(u
de
i (0)|θi))Q)(S∗i −ude

i (Q)) for i ∈ {l, h} (B.13)

where Q is the quantile among dually efficient menus of the utility ude(Q), and 1 − Fi(u
de
i (0)|θi)

is the probability that a seller makes a dually efficient offer in a θi match. By construction, these

indirect utility functions have all the properties stipulated earlier: strictly increasing in generosity,

monotone in seller type, identically ranked by their low and high utility offerings, and jointly forming a

bottom pair of intervals comprised of utilities offered in menus where high-valuation buyers’ incentive

constraint binds, potentially followed above by another pair of intervals comprised of utilities offered

in dually efficient menus.

Appendix C Exogenous Quality: Additional Proofs

Proof of Proposition 3.11. By (3.7), some high signal sellers extend separating offers if Assumption 3.3

holds and,

phHρθH ≤
(
ρ+ (1− ρ)(phHα+ phL(1− α))

)
θL

Note that the left-hand term (high signal sellers’ expected profits from separating offers) and the

right-hand term (high signal sellers’ expected profits from a pooling offer that beats all high signal

sellers) are both linear in ρ, and that the former is below (above) the latter at ρ = 0 (ρ = 1), so there

exists a unique level of competition ρ̂ such that for all ρ < ρ̂, low signal sellers strictly prefer pooling

offers. I pin down this competition threshold by setting the inequality as an equality and solve for it

as,

ρ̂(α, ~θ,P(θL)) =
(phH − phL)α+ phL

(phH − phL)α+ phH

(
θH
θL
− 1
)

which decreases in θH
θL

and, since θL < phHθH by Assumption 3.3, also in P(θH), which increases

(decreases) phH (phL).

Next, I leverage the fact that only high signal sellers separate in these economies to derive the

expression for the probability that a low-valuation buyer cannot trade, 1 − F (θL|θL). Naturally, if

high signal sellers only extend separating offers To do this, I use three equations. The first equation

is from the condition that a high signal seller be indifferent between a separating prices (in particular

θH) and the highest pooling price,

phHρθH = (ρ+ (1− ρ)(phH(1− F (θL|θH)) + phL(1− F (θL|θL))))θL

The second is from the condition that only high signal sellers separate in these economies,

(1− F (θL|θH))
1

P(h|θH)
= (1− F (θL|θL))

1

P(h|θL)
=⇒ (1− F (θL|θH)) =

α

1− α
(1− F (θL|θL))

where the probability that a seller separates in a θ match is the probability of matching with a high

signal seller, P(h|θ), times the probability that it makes a separating offer, 1 − Fh(θL). The last

equation is from Bayes’ rule,
phH
phL

=
αP(θH)

(1− α)P(θL)
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Appendix D Endogenous Quality: Equilibrium Property Proofs

Proof of Theorem 4.1. Per sale profits from θi valuation buyer intended contracts take the form:

π(qi, xi) = xi − φ(qi) = (θiqi − φ(qi)) + (xi − θiqi) = Si(qi)− ui (D.1)

and Si(qi) is concave, reaching a maximum at q∗i . Due to concavity, any incentive-compatible menu

featuring a low quality qL > q∗L is strictly dominated by one with a revised low contract of (q∗L, uL −
θL(qL − q∗L)), while any incentive-compatible menu featuring a high quality qH < q∗H is strictly

dominated by one with a revised high contract of (q∗H , uH + θH(q∗H − qH)). In other words, the

optimal incentive-compatible menus feature qL ≤ q∗L and qH ≥ q∗H .

Furthermore, ICi must bind22 if the θ¬i intended contract is not efficient; else, the revised contract

(q̃¬i, x̃¬i) featuring23 q̃¬i = uH−uL
∆θ and x̃¬i = θ¬iq̃¬i−u¬i could be paired with the former θi contract

for a strictly dominant menu - same expected θ¬i sales (by preserving the utility that a θ¬i valuation

buyer obtains), strictly higher profits-per-sale in θ¬i matches (by preserving u¬i and increasing the

gains from trade (see (D.1))), and maintaining the incentive compatibility of θi buyers (θiq̃¬i− x̃¬i =

ui). Inversely, since only one constraint IC can bind in a given menu, profit maximality implies that

any menu featuring an inefficient q¬i offer, also features efficient qi = q∗i quality provision.

Incentive compatibility bounds the qualities offered in each contract by the suggested ratio: qL ≤
uH−uL

∆θ (to satisfy ICH) and qH ≥ uH−uL
∆θ (to satisfy ICL). I have shown that ICi binds when q¬i 6= q∗i

though, so equality of the respective bound yields the form of the inefficient quality q¬i = uH−uL
∆θ .

Lastly, any menu featuring efficient quality provision in both contracts must feature utility offerings

satisfying q∗L∆θ ≤ uH − uL ≤ q∗H∆θ.

I conclude that: (1) menus featuring inefficient low-valuation buyer provision are ICH binding,

feature qL = uH−uL
∆θ < q∗L, and are paired with efficient high-valuation buyer contracts, (2) menus

featuring inefficient high-valuation buyer provision are ICL binding, feature uH−uL
∆θ = qH < q∗H , and

are paired with efficient low-valuation buyer contracts, and (3) doubly efficient menus correspond to

those for which q∗L∆θ ≤ uH − uL ≤ q∗H∆θ almost all of which have locally slack IC constraints with

the exception of boundary ones satisfying q∗i ∆θ = uH−uL
∆θ at which IC¬i binds.

Proof of Proposition 4.2. Recall that seller types with degenerate beliefs have measure zero, so the

following arguments apply to almost every bid offered in a match, in particular those that would be

offered by types with nondegenerate conditional beliefs.

Consider the essential infimum and supremum, ui and ui, respectively, on the equilibrium indirect

utility offered to θi valuation buyers. By Theorem 4.1, equilibrium menus are separating and these

must correspond to the bounds on utilities extended in θi intended contracts, with profits Si(uL, uH)−
ui. If ui > S∗i , then a discrete mass of menus would feature contracts with a non-zero probability of

being accepted and entail negative profits per sale. As such, ui ≤ S∗i and I will argue that the lower

bound ui is exactly S∗i .

Suppose that ui < S∗i . By Theorem 4.1, optimal contracts with ui < S∗i entail strictly positive24

profits per sale if qi > 0 and zero profits per sale if qi = 0. Further, there are only two possibilities

in a neighborhood of ui: either ui is an atom, or half-open sets [ui, ui + δ) are assigned arbitrarily

small mass, as δ ↘ 0, by the equilibrium distribution of indirect utility offerings by competitors in θi

22It is elementary to check that only one IC constraint can bind in a menu.
23Where q̃¬i < q¬i if ¬i = l and > if ¬i = h.
24If qi = q∗i , the claim follows. If qi 6= q∗i and ui = Si(qi), then lowering ui by a small ε < ui − ui would allow the

seller to still win matches with some probability ui and make strictly positive profits in these, as the revision would
both increase the efficiency and lower the generosity of these sales.
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matches Fi(ui|θi).
Recall that every contract makes nonnegative profits per sale, since not trading (offering zero

quality) is always an option. As such, if there were an atom at ui, the menu implied by pairing a

slightly more generous θ¬j offering u¬j + 2ε and ui + ε (for ε > 0 small) would be strictly dominant,

entailing (at worst) an arbitrarily small decrease in θ¬j per sale profits, a discrete increase in θi

expected sales, and thus a discrete increase in θi profits per match. Whereas if there were no atom at

the lower bound, contracts offering ui arbitrarily close have θi match profits arbitrarily close to zero

(they almost surely compete against a more generous seller); so a discrete mass of these is strictly

dominated by a menu of the form given in the atom case.

I conclude that almost every seller selects a pair of contracts that extend implied utilities (S∗L, S
∗
H).

By Theorem 4.1, the unique optimal menu that satisfies these conditions is ((q∗L, φ(q∗L)), (q∗H , φ(q∗H))).

No Atoms. Toward a contradiction, suppose that FH had an atom at uH and let (uL, uH) be an

equilibrium menu featuring this high bid generosity.

I begin by showing that SH(uL, uH) − uH > 0 in any equilibrium offer (uL, uH). Suppose not.

Then it must be that SL(uL, uH)−uL ≤ 0, otherwise offering a pooling menu of only the low-valuation

buyer’s contract would strictly increase the seller’s expected profits - strictly positive per-sale profits

from θH sales and strictly positive probability of being accepted (ρ > 0), even by low-valuation buyers.

But then expected profits Π ≤ 0, which contradicts seller optimization: the seller can always offer the

menu ((0, 0), (q∗H , θHq
∗
H)) and obtain strictly positive expected profits. With this fact, I can rule out

an atom at any uH in supp(ΨH).

In particular, note that at any uH with discrete mass and for any type of seller pL,

lim
ε↘0

Π(uL + ε, uH + ε)−Π(uL, uH)

= lim
ε↘0

{ ∑
k=l,h

pkΨk(uk + ε)(Sk(uL + ε, uH + ε)− uk − ε)−
∑
k=l,h

pkΨk(uk)(Sk(uL, uH)− uk)

}
= lim

ε↘0

(
(1− ρ)(FH(uH + ε)− FH(uH))

)
(SH(uL, uH)− uH)

> 0 (D.2)

and so (uL, uH) would be strictly dominated by (uL + ε, uH + ε), for some ε > 0.

Furthermore, SL(uL, uH)−uL ≥ 0 in equilibrium; otherwise, this menu would be strictly dominated

by one with the paired offers (qL, xL) = (0, 0) and (qH , xH) = (q∗H , θHq
∗
H − uH), which maintain

expected high-valuation match profits and strictly those of low ones (these buyers either select a

no-loss contract, (0, 0), or one with strictly positive profits per sale, (qH , xH)).

I close by ruling out atoms among low bids. Suppose that supp(ΨL) had an atom at uL and

let (uL, uH) be an equilibrium menu featuring this low bid generosity. Inequalities (D.2) rule out

SL(uL, uH)−uL > 0, so the only possible menu with such a low offering must be one that makes zero

profits in low-valuation matches SL(uL, uH) − uL = 0. Suppose that uL > 0. If ICL is slack, then

menu with slightly less low generosity (uL − ε, uH) is strictly dominant (low efficiency nondecreasing

hence positive profits per low sale, some low sales since ρ > 0, high trade profitability not affected),

whereas if ICL binds, low-valuation buyers obtain utility uL > 0 from the high contract, which has

strictly positive profits per sale, so the seller could just pool all buyers on this contract and makes

strictly positive profits in low-valuation matches as well. Lastly, if uL = 0 and SL(uL, uH)− uL = 0,

it follows (by Theorem 4.1) that uH = 0, so a strictly positive mass of such (uL, uH) menus would
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give rise to an atom in supp(ΨH).

Weak-Orderedness. Consider two equilibrium menus (uL, uH) and (ũL, ũH), offered by sellers of (pos-

sibly equal) respective types pL and p̃L, which violate weak-orderedness; without loss, suppose that

this takes place via ũH > uH and uL > ũL. I proceed case-by-case, depending on the incentive

compatibility constraint that binds at (uL, uH).

Suppose that ICH binds at (uL, uH). Then,

ΨL(uL) > ΨL(ũL)

SL(uL, ũH)− SL(uL, uH) ≥ SL(ũL, ũH)− SL(ũL, uH) ≥ 0

SL(uL, ũH)− SL(uL, uH) > 0

where the second set of inequalities follows by the convexity of costs, Theorem 4.1,

SL(uL, uH) = θLqL(uL, uH)− φ (qL(uL, uH))

qL(uL, uH) =

uH−uL
∆θ if uH − uL < q∗L∆θ

q∗L otherwise

while the third is due to the fact that ICH binds at (uL, uH) (by assumption), so the efficiency of low

trade achieved by (uL, ũH) must be strictly greater. Thus,

ΨL(uL) (SL(uL, ũH)− SL(uL, uH))−ΨL(ũL) (SL(ũL, ũH)− SL(ũL, uH)) > 0

and,

ΨL(uL) (SL(uL, ũH)− uL)−ΨL(ũL) (SL(ũL, ũH)− ũL) > ΨL(uL) (SL(uL, uH)− uL)−ΨL(ũL) (SL(ũL, uH)− ũL)

(D.3)

When facing high-valuation buyers, Theorem 4.1 indicates that,

SH(uL, uH) = θHqH(uL, uH)− φ (qH(uL, uH))

qH(uL, uH) =

uH−uL
∆θ if uH − uL > q∗H∆θ

q∗H otherwise

so high contracts are decreasing in efficiency with respect to the difference in utility that a menu offers

to low- versus high-valuation buyers. But the weak-orderedness violation implies ũH − uL < ũH − ũL
and uH − uL < uH − ũL, so that cost convexity also implies,

SH(uL, ũH)− SH(ũL, ũH) ≥ SH(uL, uH)− SH(ũL, uH) ≥ 0

which is equivalent to,

ΨH(ũH) ((SH(uL, ũH)− ũH)− (SH(ũL, ũH)− ũH)) ≥ ΨH(uH) ((SH(uL, uH)− uH)− (SH(ũL, uH)− uH)) ≥ 0

(D.4)
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Jointly (D.3) and (D.4) yield,

pL [ΨL(uL) (SL(uL, ũH)− uL)−ΨL(ũL) (SL(ũL, ũH)− ũL)]

+ pH [ΨH(ũH) (SH(uL, ũH)− ũH)−ΨH(ũH) (SH(ũL, ũH)− ũH)]

> pL [ΨL(uL) (SL(uL, uH)− uL)−ΨL(ũL) (SL(ũL, uH)− ũL)]

+ pH [ΨH(uH) (SH(uL, uH)− uH)−ΨH(uH) (SH(ũL, uH)− uH)]

≥ 0

where the last inequality comes from the optimality of (uL, uH) for a pL type seller. Necessarily then,

at least one of the terms in brackets at the topmost expression must be > 0 and we know, by (D.4),

that the second term is ≥ 0. If the first was > 0 or if it were = 0 (and so the second term in brackets

was > 0), then any seller - including a p̃L type - would strictly prefer (uL, ũH) over (ũL, ũH). The

only alternative then is that this first bracket term is < 0 and so that the second bracket term is > 0.

Given this fact, I can take advantage of (D.3), to note that the first term in brackets of the bottom

expression is also < 0 and the second > 0. The latter strict inequality can only hold when ICL binds

at both (ũL, uH) and, since ũH > uH , also at (ũL, ũH).

However, for (uL, uH) to be preferred by a type pL seller over (uL, ũH), which is strictly more

profitable in low-valuation matches (since (uL, uH) is ICH binding), the chosen menu must be strictly

more profitable in the high. But then,

ΨH(uH) (SH(ũL, uH)− uH)−ΨH(ũH) (SH(ũL, ũH)− ũH) (D.5)

≥ ΨH(uH) (SH(uL, uH)− uH)−ΨH(ũH) (SH(uL, ũH)− ũH)

> 0

and (ũL, uH) is strictly better than (ũL, ũH) in high-valuation matches and identical in those with

buyers of low-valuation (same sales, same profits per-sale) - making it strictly preferable for a p̃L type.

These arguments are sufficient to establish that25 for a given optimal menu (uL, uH) at which ICH

binds, then any other equilibrium menu (ũL, ũH) with ũi > ui - offered by any type of seller - must

have ũ¬i ≥ u¬i.
The only comparisons left to consider are those between two ICL binding menus and those between

one at which ICL binds one with another that is dually efficient; any comparison where ICH binds

in a menu is covered by the previous reasoning. But, if ICL is to bind in either of the potentially

non-weakly-ordered menus, giving rise to ũH > uH and uL > ũL, then it must bind at the menu

with the largest utility difference, (ũL, ũH). Suppose that this is so and consider the alternative bid

(ũL, uH).

By the fact that (uL, uH) is either dually efficient or ICL binding, the same must be true for

(ũL, uH) and (uL, ũH), which have strictly larger differences in offered utilities, so S∗L = SL(uL, uH) =

SL(ũL, uH) = SL(ũL, ũH) = SL(uL, ũH) and,

ΨL(ũL) (SL(ũL, uH)− ũL)−ΨL(ũL) (SL(ũL, ũH)− ũL) (D.6)

= ΨL(uL) (SL(uL, uH)− uL)−ΨL(uL) (SL(uL, ũH)− uL)

= 0

25Note that the case of ICH binding at (uL, uH) and uH > ũH but ũL > uL is subsumed in one I’ve established,
because ICH must also bind at (ũL, ũH) in these other inequalities.
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Given that ICL binds at (ũL, ũH) however, SH(uL, ũH) − SH(ũL, ũH) > SH(uL, uH) − SH(ũL, uH)

and,

ΨH(uH) (SH(ũL, uH)− uH)−ΨH(ũH) (SH(ũL, ũH)− ũH) (D.7)

> ΨH(uH) (SH(uL, uH)− uH)−ΨH(ũH) (SH(uL, ũH)− ũH)

≥ 0

where the weak inequality is due to the choice of (uL, uH) over (uL, ũH) by the pL type seller, while

the strict inequality follows from the ICL constraint binding in all four of menus under consideration.

Jointly (D.6) and (D.7) then imply that (ũL, ũH) is strictly dominated by (ũL, uH) for any seller

type however, since the latter is equally profitable in low-valuation matches and strictly better in the

high.

Ordered, Support Convexity, and Profit Ranking. I will now strengthen the claim that equilibrium

menus are weakly ordered to one of (strict) orderedness. The proof is broken up into 8 steps which

will show the monotonicity of profits per low- and high-valuation match with respect to generosity as

well as convex supports for the probability of winning distributions Ψj .

Step 1 (Conditional Expected Sales): Every type of seller expects the same sales, Ψi(ui) from

an indirect utility offer of ui.

The buyer’s type determines the distribution of signals observed by sellers with each pre-

cision, αe, and so the distribution of seller types,

P(pL = p|θi) =
∑
e, j

1 (p = P e(θL|j))P e(j|θi)µ(e)

A seller’s mixing distribution, P((uL, uH)|pL), is determined by her type. As such, every

seller’s expected distribution of competitor bids,

F (ũi ≤ ui|θi) =
∑
pL

P(ũi ≤ ui|p)P(pL|θi)

is identical when the buyer’s type is θi.

Step 2 (No ICL): Under Assumption 4.2, ICL binding menus are not offered in equilibrium.

The profits per high sale of any menu (uL, uH) are given by,

SH(uL, uH)− uH ≤ S∗H − uH

so uH ≤ S∗H , as losses are strictly increasing in uH for larger values. The gap between

utilities of any menu is therefore bounded by,

uH − uL ≤ uH ≤ S∗H = (θH − κm)(q∗H − q∗L) + (θH − κL)q∗L

≤ (θH − θL)(q∗H − q∗L) + (θH − θL)q∗L

= ∆θq∗H
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Step 3 (Dually Efficient Characterization): If ∆θq∗L < ∆u < ∆θq∗H , then sufficiently small

changes uH or uL leave expected profits per low- and high-valuation match unchanged. Further, the

existence of a menu (udeL , u
de
H ) with ∆θq∗L < udeH − udeL ≤ ∆θq∗H implies the existence of another menu

(udeL , u
de
H ) with udeH − udeL = ∆θq∗L and convex regions [udei , u

de
i ] for i ∈ {L,H} made up of offerings

from dually efficient menus that satisfy the strict inequalities. Lastly, if ∆ude = ∆θq∗H , then there

exists a δ > 0, such that a bid of (uL − δ, uH − δ) has identical profits in low- and high-valuation

matches.

Since lowering either offering does not affect the efficiency of bids when the inequalities are

strict, a gap below either ui would allow a strict increase in profitability from undercutting

the original utility by some ε > 0. Given that there aren’t gaps under either coordinate

then, there can’t be ICH binding menus immediately below - by weak-orderedness and

these menus’ strictly smaller ∆u respectively - so, all coordinates u′i ∈ [ui− δ, ui] for δ > 0

small and j ∈ {l, h} belong to dually efficient menus, and consequently, Ψi(u
′
i)(S

∗
i − u′i) =

Ψi(ui)(S
∗
i − ui) (otherwise, some seller would be able to deviate to a bid with higher

expected profits per-match without affecting the efficiency of the paired contract). This

establishes the first sentence’s claim.

The preceding logic implies that dually efficient menus satisfying the pair of strict inequal-

ities have other dually efficient menus immediately below them in generosity and that the

profitability of offering these menus, conditionally on matching with either type of buyer,

is identical. Consider the infimum ui coordinates of the contiguous intervals made up by

these dually efficient menus and refer to it as udei for i ∈ {l, h}. Note that ∆ude = ∆θq∗L,

since otherwise necessarily there’d be a gap below one of the udei coordinates (no suffi-

ciently close dually efficient menus with coordinates below, whereas coordinates from ICH

binding menus would create gaps), which would allow an analogous deviation26 as in the

previous paragraph for those seller types offering dually-efficient menus with ui’s close to

udei . This establishes the second sentence.

For the case that ∆ude = ∆θq∗H , it is sufficient to observe that all entries immediately below

the menu (udeL , u
de
H ) and sufficiently close must also be dually efficient to avoid creating

a gap. By continuing down distribution in either coordinate one must eventually reach a

dually efficient menu with ∆u < ∆θq∗H ; else, there’d either be a gap (allowing the familiar

deviation) if one encountered an ICH menu before reaching a dually efficient one that

satisfied the pair of strict inequalities, or it’d hold that udeL = 0 with a paired high utility

of ũH = udeL + ∆θq∗H . In this last case, the lack of atoms, weak-orderedness (ruling out a

non-zero mass of ICH binding ones having entries below ũH), and lack of dually efficient

bids with ∆u < ∆θq∗H would imply that there is a gap below ũH and so that this menu’s

profitability could be strictly improved by lowering its high offering (more profits per high

sale without decreasing the efficiency of low sales).

To prove the statement in the last sentence, consider the supremum over dually efficient

bids ui with ui < udej that belong to a menu with ∆u < ∆θq∗H , and refer to it as u′j .

If u′j = udej , we are done by the previous claims. If u′j < udej , then all menus with bids

in [u′j , u
de
j ] for either j ∈ {l, h} must have ∆u = ∆θq∗H and it is sufficient to establish

the invariance of profits in this region, as the previous arguments take over for dually

efficient menus with bids below. Note that the existence of a high offering uH that allows

26Profits conditionally on buyer type are continuous with respect to generosity due to the lack of atoms in the bid
distribution, while the continuity of profits per sale follows from the efficiency formulation Si(uL, uH)− ui.

49



greater expected profits per high-valuation match than neighboring ones above would allow

these sellers above to strictly increase their expected profits per high-valuation match

(while leaving low-valuation match ones unperturbed), by instead choosing uH as the high

pairing; by extension of this local argument, expected high-valuation match profits are

maintained by menus satisfying ∆θq∗H in the interval [u′H , u
de
H ]. The invariance of expected

low-valuation match profits for menus with bids in [u′L, u
de
L ] follows by a similar logic: the

existence of a point uL in this interval allowing larger expected low-valuation match profits

would allow sellers above to shift their high and low offering by the same amount so as

to obtain the superior expected profits per low-valuation match while preserving the same

expected profits per high-valuation match.

Step 4 (Convex ΨL Support): There are no gaps in supp(ΨL).

Since ICL never binds in an equilibrium bid by Step 2, gaps in supp ΨL would imply the

existence of a deviation for sellers bidding menus featuring a uL offer close to the top

of said gap. Such a seller could decrease its low offer to some value in the gap, so as

to obtain a discrete increase in profits per low sale, while sacrificing an arbitrarily small

number of low sales (sales continuous in generosity) and maintaining expected profits per

high-valuation match, thereby strictly increasing expected profits. The only non-obvious

case is if ∆u = ∆θq∗H , but then we know from Step 3 that all the u′H immediately below

uH preserve expected profits per high-valuation match, so a revision of uL and uH by the

same δ downward would do what is described.

Step 5 (Ordereness Violations): The only possible violation of strict-orderedness between two

equilibrium menus (uL, uH) and (u′L, u
′
H), where ICH binds in at least one of them, is if uL = u′L,

u′H > uH , and p
′

L > pL for the respective seller types that offer these.

Given two equilibrium menus (uL, uH) and (u′L, u
′
H), such that ICH binds in at least

one, these must be weakly ordered, so the violation of strict ordering must involve either

uL = u′L and uH > u′H or uH = u′H and uL > u′L. However, the second case cannot be.

To see this point, note that if uH = u′H and uL > u′L, ICH must bind at the menu with the

smaller generosity difference, (uL, uH). As such, any other bid (ũL, ũH) with ũL ∈ [u′L, uL]

is weakly ordered with respect to this menu, so ũH ≤ uH . And if ICH bound at (ũL, ũH),

then it too would be weakly ordered with respect to (u′L, u
′
H), so that u′H ≤ ũH . Jointly,

these statements imply that uH = ũH = u′H for any ICH binding bid with a low offering

in interval [u′L, uL] and thus that a nonzero mass of such menus gives rise to an atom at

uH (contradicting the lack of atoms). I only have the mass of dually efficient menus left

to fill the intervals below uL. Weak ordering requires these to satisfy ũH ≤ uH and dual

efficiency ∆θq∗L ≤ ∆ũ, so that,

ũL ≤ ũH −∆θq∗L ≤ uH −∆θq∗L < uL

Implying the existence of a δ > 0, for which ΨL([uL − δ, uL]) = 0 (contradicting Step 4).

If u′L = uL and u′H > uH instead, ICH must bind at (uL, uH); therefore, (u′L, u
′
H) is strictly

more profitable in low-valuation matches (more efficient, same low generosity, same sales).

The menu (uL, uH) is offered in equilibrium though, so it cannot be strictly dominated

and must be superior to (u′L, u
′
H) in high-valuation matches. This difference in profits
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conditionally on a buyer type can only be optimal for two sellers if they differ in seller

type, p′L 6= pL, with the one who places more weight on low-valuation matches p′L > pL

offering the menu (u′L, u
′
H) that is more profitable in them.

Step 6 (Profit Ranking): Given two menus (uL, uH) and (u′L, u
′
H) with uL < u′L, it must be that

the expected profits per high-valuation match satisfy ΨH(u′H)(S∗H − u′H) ≤ ΨH(uH)(S∗H − uH) and

inversely for low-valuation match profits, ΨL(u′L)(SL(u′L, u
′
H) − u′L) ≥ ΨL(uL)(SL(uL, uH) − uL),

with both inequalities either strict or equal. In particular, if the inequalities are strict, the type p′L of

the seller who bids (u′L, u
′
H) must be strictly greater than that of the seller who bids (uL, uH).

Consider menus (uL, uH) and (u′L, u
′
H) with uL < u′L close. If ∆θq∗L ≤ ∆u′ ≤ ∆θq∗H ,

any (uL, uH) with uL sufficiently close must be dually efficient and maintain expected

profits per high and low-valuation match by Step 3. Whereas if ∆u′ < q∗L∆θ, for uL close:

(a) ΠH(u′L, u
′
H) = ΠH(uL, u

′
H), (b) to rule out a deviation toward the more efficient bid

(uL, u
′
H) by the type bidding (uL, uH), necessarily ΠH(uL, u

′
H) < ΠH(uL, uH), and (c)

to rule out a deviation, by the type offering (u′L, u
′
H), towards the more high-valuation

match profitable bid (uL, uH), necessarily ΠL(u′H , u
′
L) > ΠL(uH , uL). The menu with the

more generous low offer is therefore more profitable in low-valuation matches and must be

offered by the seller of type pL, which places more weight on low-valuation matches. This

local reasoning around any point supp(ΨL) yields the global claim.

Continuous Differentiable Distributions. I will show that the functions ΨH(·) and ΨL(·) are continu-

ously differentiable. Since these functions are given by the composition of FH and FL with a continuous

mononote function, this will prove the continuous differentiability of the equilibrium offer distributions.

I present the case of ΨH (ΨL’s is analogous). Let uH be a utility level offered in the interior of

the support of FH and uL be its paired low utility offering such that the menu (uL, uH) is optimal

for some seller of type pL. I proceed to bound the difference ΨH(uH + ε)−ΨH(uH) from above and

below.

For any ε ∈ R, the expected profit to this type of seller from the deviation menu (uL, uH + ε) can

be decomposed as:

pLΨL(uL)(SL(uL, uH + ε)− uL) + pHΨH(uH + ε)(SH(uL, uH + ε)− uH − ε)

= pLΨL(uL)(SL(uL, uH)− uL) + pHΨH(uH)(SH(uL, uH)− uH)

+ pLΨL(uL)(SL(uL, uH + ε)− SL(uL, uH)) + pHΨH(uH)(SH(uL, uH + ε)− ε− SH(uL, uH))

+ pH(ΨH(uH + ε)−ΨH(uH))(SH(uL, uH + ε)− uH − ε)

and by optimality, it must be that Π(uL, uH ; pL) ≥ Π(uL, uH + ε; pL), which implies the following

inequality,

pH(ΨH(uH + ε)−ΨH(uH))(SH(uL, uH + ε)− uH − ε) (D.8)

≤ pLΨL(uL)(SL(uL, uH)− SL(uL, uH + ε)) + pHΨH(uH)(SH(uL, uH)− SH(uL, uH + ε) + ε)

Similarly, for any ε ∈ R such that uH + ε is in the interior of the support of FH , there exists ul,ε

for which (ul,ε, uH + ε) is the optimal bid of some seller with type p̃L. And, decomposing the profits
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from this bid to said seller as above:

p̃LΨL(ul,ε)(SL(ul,ε, uH + ε)− ul,ε) + p̃HΨH(uH + ε)(SH(ul,ε, uH + ε)− uH − ε)

= p̃LΨL(ul,ε)(SL(ul,ε, uH)− ul,ε) + p̃HΨH(uH)(SH(ul,ε, uH)− uH)

+ p̃LΨL(ul,ε)(SL(ul,ε, uH + ε)− SL(ul,ε, uH)) + p̃HΨH(uH)(SH(ul,ε, uH + ε)− ε− SH(ul,ε, uH))

+ p̃H(ΨH(uH + ε)−ΨH(uH))(SH(ul,ε, uH + ε)− uH − ε)

Again, since here (ul,ε, uH + ε) is optimal for a seller of type p̃L, it must be that Π(ul,ε, uH + ε; p̃L) ≥
Π(ul,ε, uH ; p̃L), which implies the following inequality,

p̃H(ΨH(uH + ε)−ΨH(uH))(SH(ul,ε, uH + ε)− uH − ε) (D.9)

≥ p̃LΨL(ul,ε)(SL(ul,ε, uH)− SL(ul,ε, uH + ε)) + p̃HΨH(uH)(SH(ul,ε, uH)− SH(ul,ε, uH + ε) + ε)

So, by (D.8) and (D.9), I can form a squeezed inequality for the derivative of ΨH(·),

p̃L
p̃H

ΨL(ul,ε)(SL(ul,ε, uH)− SL(ul,ε, uH + ε)) + ΨH(uH)(SH(ul,ε, uH)− SH(ul,ε, uH + ε) + ε)

ε(SH(ul,ε, uH + ε)− uH − ε))

≤ ΨH(uH + ε)−ΨH(uH)

ε
≤

pL
pH

ΨL(uL)(SL(uL, uH)− SL(uL, uH + ε)) + ΨH(uH)(SH(uL, uH)− SH(uL, uH + ε) + ε)

ε(SH(uL, uH + ε)− uH − ε)

Considering the right-hand derivative, for ε ↘ 0 small SH(uL, uH + ε) − uH − ε > 0, since

(uL, uH) is an equilibrium menu and (as I’ve argued in Section D in the proof ruling out atoms)

SH(uL, uH) − uH > 0 for all such menus. With the nonzero denominator established, recall that

qi(uL, uH) (specified in Theorem 4.1) is everywhere left as well as right differentiable in each variable

and that Si(uL, uH) = θiqi(uL, uH)− φ(qi(uL, uH)), so taking the limit of the right-hand expression,

I obtain:

− pL
pH

ΨL(uL) ∂SL
∂+uH

(uL, uH) + ΨH(uH)
(

1− ∂SH
∂+uH

(uL, uH)
)

SH(uL, uH)− uH
The left-hand side expression of the inequality is similar to the right, with the exception that ul,ε

is substituted in for uL and the weighting probabilities are (p̃L, p̃H) instead of (pL, pH), thus requiring

a different argument. If uH − uL > q∗L∆θ, I establish in the orderedness proof that offerings locally

around both uL and uH are those of dually efficient bids and that they preserve expected profits

from both low- and high-valuation matches - Πi(ul,ε, uH + ε) = Πi(ul,ε, uH) for i ∈ {l, h}. So, if

a seller of type p̃L finds (ul,ε, uH + ε) optimal, then so would a seller of type pL, yielding a limit

of the left-hand side expression as above (replacing p̃L with pL for ε small). On the other hand, if

uH −uL < q∗L∆θ, ICH binds locally for all menus with ε > 0 small, so the strict ordering of profits by

type requires p̃L ↘ pL. Lastly, if uH − uL = q∗L∆θ, then it must be possible to select a subsequence

with uH − ul,εñ > uH − uL or < uH − uL. In the former (latter) case, ICH is slack (binds) at the

menus of the subsequence, so the argument from the uH−uL > q∗L∆θ (uH−uL < q∗L∆θ) case applies,

and this is sufficient to obtain a convergent left-hand inequality.

Therefore, the limit as ε → 0 of the left-hand and right-hand inequalities is identical, thus estab-

lishing the right-hand derivative claim:

dΨH

d+uH
(uH) =

− pL
pH

ΨL(uL)∂SL(uL,uH)
∂+uH

+ ΨH(uH)(1− ∂SH(uL,uH)
∂+uH

)

SH(uL, uH)− uH
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The left-hand derivative argument is analogous except that I consider the menu (uL, uH − ε).
As stated at the start, the case of ΨL(·) is analogous, ultimately yielding,

dΨL

duL
(uL) =

−pHpL ΨH(uH)∂SH(uL,uH)
∂uL

+ ΨL(uL)(1− ∂SL(uL,uH)
∂uL

)

SL(uL, uH)− uL

Under strictly convex costs, at the sole27 points of possible non-differentiability where uH − uL =

∆θq∗i ,
∂Si(uL, uH)

∂+ui
(uL, uH) =

∂Si(uL, uH)

∂−ui
(uL, uH) =

θi − φ′(q∗i )

∆θ
= 0

hence the stronger differentiability claim for Ψi. If costs instead take a piecewise form, unless uH−uL =

∆θq∗i , then Si(uL, uH) is locally linear (or constant) in each variable, so that the left and right

derivatives are also equal. Since Si(uL, uH)− ui are continuous in (uL, uH) and Ψi(·) are continuous

by the lack of atoms, the distributions Ψi are also continuously differentiable on the interior of the

supports with the exception of points ui corresponding to the (no more than two) bids (uL, uH) at

which uH − uL = ∆θq∗i .

27For a given equilibrium distribution.
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